24 research outputs found

    The Lantern Vol. 37, No. 1, Fall 1970

    Get PDF
    • Circumstance • Advice • For What You Do For Me • Blink • Love • Love II • Magic • To Be a Child • A Year Later • A Poem in February • The Crystal Brick Road • Ephemera • Life • Whiskers • Thoughts On Being Sick • A Non-Poem • A Gruk Anthology • Moon • A Thought • Dwarf in an Existential Dawn • Corridors To My Mind • Sadness • The Enzyme Song • Creatures of Sandhttps://digitalcommons.ursinus.edu/lantern/1098/thumbnail.jp

    The Lantern Vol. 38, No. 2, Spring 1972

    Get PDF
    • Summer II • For a True Romantic • The Lyre Neglected • Hands • To a Friend • Sleep • The Wind\u27s Confusing Sounds • The Garden • The Child Has Come Among Us • The River and the Sea • The Ice • La Lamentation de la Fleur • Nous Sommes • Upon Becoming • See! • Feeling November • Transience • Clear • Isotopes of Reality • Just Yesterday • Emergence • Push • The Way Love Starts • Poetic Prosy • An Agreement • Spring 1930 • The Summers of \u2759, \u2760, \u2761 • Ode to Optometry • The Easter Bunny - Noble Beasthttps://digitalcommons.ursinus.edu/lantern/1100/thumbnail.jp

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease

    Tuning Electrical, Optical, and Thermal Properties through Cation Disorder in Cu2ZnSnS4

    No full text
    Chemical disorder in semiconductors is important to characterize reliably because it affects materials performance, for instance by introducing potential fluctuations and recombination sites. It also represents a means to control material properties, to far exceed the limits of equilibrium thermodynamics. We present a study of highly disordered Cu-Zn-Sn-S (d-CZTS) films along the Cu2SnS3-Cu2ZnSnS4-ZnS binary line, deposited by physical vapor deposition. Deposition at low temperature kinetically stabilizes compositions that are well outside of the narrow, equilibrium solid solution of kesterite (Cu2ZnSnS4). Here we study d-CZTS and its thermal treatment using complementary characterization techniques: X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). We find that cations in d-CZTS are highly disordered while the sulfur anions remain in a well-defined, cubic close-packed lattice. On the atomic scale, composition fluctuations are accommodated preferentially by stacking faults. Kinetically-stabilized cation disorder can produce nonequilibrium semiconductor alloys with a wide range of band gap, electronic conductivity, and thermal conductivity. d-CZTS therefore represents a processing route to optimizing materials for optoelectronic device elements such as light absorbers, window layers, and thermal barriers.Army Research Office (Grant W911NF-16-1-0406

    Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites.

    Get PDF
    Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now prioritized for functional study
    corecore