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ABSTRACT The protozoan parasite Cryptosporidium sp. is a leading cause of diar-
rheal disease in those with compromised or underdeveloped immune systems, par-
ticularly infants and toddlers in resource-poor localities. As an enteric pathogen,
Cryptosporidium sp. invades the apical surface of intestinal epithelial cells, where it
resides in close proximity to metabolites in the intestinal lumen. However, the effect
of gut metabolites on susceptibility to Cryptosporidium infection remains largely
unstudied. Here, we first identified which gut metabolites are prevalent in neonatal
mice when they are most susceptible to Cryptosporidium parvum infection and then
tested the isolated effects of these metabolites on C. parvum invasion and growth in
intestinal epithelial cells. Our findings demonstrate that medium or long-chain satu-
rated fatty acids inhibit C. parvum growth, perhaps by negatively affecting the stream-
lined metabolism in C. parvum, which is unable to synthesize fatty acids. Conversely,
long-chain unsaturated fatty acids enhanced C. parvum invasion, possibly by modulat-
ing membrane fluidity. Hence, gut metabolites, either from diet or produced by the
microbiota, influence C. parvum growth in vitro and may also contribute to the early
susceptibility to cryptosporidiosis seen in young animals.

IMPORTANCE Cryptosporidium sp. occupies a unique intracellular niche that exposes
the parasite to both host cell contents and the intestinal lumen, including metabo-
lites from the diet and produced by the microbiota. Both dietary and microbial prod-
ucts change over the course of early development and could contribute to the
changes seen in susceptibility to cryptosporidiosis in humans and mice. Consistent
with this model, we show that the immature gut metabolome influenced the growth
of Cryptosporidium parvum in vitro. Interestingly, metabolites that significantly altered
parasite growth were fatty acids, a class of molecules that Cryptosporidium sp. is
unable to synthesize de novo. The enhancing effects of polyunsaturated fatty acids
and the inhibitory effects of saturated fatty acids presented in this study may pro-
vide a framework for future studies into this enteric parasite’s interactions with exog-
enous fatty acids during the initial stages of infection.

KEYWORDS 16S rRNA, Cryptosporidium parvum, enteric infection, essential nutrient,
fatty acid, metabolite, microbiota

ryptosporidium sp. has gained notoriety in recent years due to its surprising preva-
lence as a major enteric diarrheal pathogen in children under 2 years of age in
Africa and Southeast Asia (1, 2). The parasite is transmitted by a direct oral-fecal route,
often through the ingestion of environmentally resistant oocysts in contaminated
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water supplies (3). Cryptosporidiosis in humans is primarily caused by two species;
Cryptosporidium parvum infects a wide variety of domestic livestock and is transferred
to humans as a zoonotic infection, although some subtypes are known to circulate
more directly between humans (4, 5). In contrast, Cryptosporidium hominis is almost
exclusively transmitted human to human (5, 6). Treatment options for cryptosporidiosis
are very limited, as the only FDA-approved drug nitazoxanide is ineffective in immuno-
compromised patients and not approved for use in children (7).

Numerous studies demonstrate that neonatal animals are highly susceptible to
Cryptosporidium sp. and that resistance to infection increases with age in mice (8), dairy
calves (9), and humans (1, 2). In fact, the Global Enteric Multicenter Study (GEMS) found
that, in developing countries, Cryptosporidium sp. was the second leading cause of
diarrheal episodes in infants (0 to 11 months of age), the third leading cause in toddlers
(12 to 23 months of age), and nearly absent in children 2 years and older (1, 2). Why
neonatal animals are particularly susceptible to the parasite and what causes them to
become resistant as they age are not well understood but could result from changes in
the immune system, microbiota, or diet, of which all change dramatically in early life.

Interestingly, the increase in resistance to Cryptosporidium infection correlates with
time of weaning, when drastic shifts in the diversity and composition of the gut micro-
biota occur in both neonatal mice and human infants (10, 11). As enteric pathogens,
Cryptosporidium spp. primarily infect the apical end of small intestinal enterocytes,
where they are enveloped by host membranes but remain extracytoplasmic (12, 13).
Protrusion of the parasite-containing vacuole into the intestinal luminal space places
them near the mucosal layers and associated gut microbiota. In fact, several studies
have shown that C. parvum infection alters the microbiota of mice (14, 15), and treat-
ment with a probiotic enhanced C. parvum infection, presumably by altering the micro-
biota (16). Furthermore, loss of the microbiota in gnotobiotic and antibiotic-treated
adult mice results in an increased susceptibility to Cryptosporidium infection (17), indi-
cating that a diverse, mature microbiota provides a protective effect against
Cryptosporidium sp. A recent study comparing different antibiotics revealed that cloxa-
cillin treatment of mice induced changes in the microbiota and altered metabolites
with increased susceptibility (18).

Since Cryptosporidium sp. spends most of its life cycle inside a host cell, interactions
between the parasite and the microbiota are likely mediated through metabolites in
the intestinal luminal space. Consistent with this idea, one study showed that high lev-
els of fecal indole, a microbial metabolite, protected human volunteers from infection
by C. hominis, as monitored by oocyst shedding (19). While indole appears to inhibit
the parasite, it is possible that other gut metabolites may promote Cryptosporidium
growth. The genomes of C. parvum (20) and C. hominis (21) are highly streamlined,
with the loss of many metabolic pathways and the expansion of transporters (22);
hence, they must acquire many basic nutrients from their host or surrounding envi-
rons. It is possible that metabolites highly enriched in the neonatal gut, either derived
from diet or the microbiota, are beneficial to the parasite and that the transition from
milk to solid food, which is accompanied by changes in the microbiota, deprives
Cryptosporidium sp. of an essential nutrient.

In the present study, we undertook a systematic study of the changes in susceptibil-
ity of neonatal mice and the correlated change in the collective metabolites found in
the lumen of the gut on the growth of C. parvum. Our findings reflect both enhancing
and inhibitor activities of metabolites, suggesting that gut metabolites may influence
susceptibility to infection during early development.

RESULTS

Age-dependent susceptibility to C. parvum in a neonatal mouse model of
cryptosporidiosis. To identify gut metabolites that may facilitate Cryptosporidium
infection, we first determined the critical window of susceptibility to C. parvum in a
neonatal mouse model of cryptosporidiosis. Four groups of 10 pups each were reared
simultaneously, and a subset of pups was infected each week with 5 x 10* C. parvum
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FIG 1 Differences between C. parvum infectivity and cecal microbiota during murine postnatal development. (A) Diagram of the experimental design.
Separate cohorts of mice were challenged with 5 x 10* C. parvum oocysts at each week of life (n=5 to 10 mice per week). Five days postinfection (p.i.),
intestines were removed, and the number of C. parvum organisms per gram of intestine was quantified by qPCR. In a separate experiment, cecal contents
and small intestinal luminal contents were collected from uninfected mice at 1, 2, 3, and 6 weeks of age (n=12 mice per week) for 16S rRNA sequencing
and metabolomics, respectively. (B) Line graph depicting the average number of C. parvum organisms per gram intestine of mice infected at the
indicated weeks of age (mean * SD, n=10 mice each for weeks 1 and 2, n=5 mice each for weeks 3 to 6). (C) Taxonomic differences in the cecal
microbiota of mice at 1, 2, 3, or 6 weeks of age displayed as a stacked bar graph of the relative abundances of the bacterial genera detected by 16S
rRNA sequencing.

oocysts (Fig. 1A, see Fig. S1 in the supplemental material). After 5 days of infection, the
number of C. parvum genome equivalents in whole intestines was measured using
quantitative PCR (gPCR) and normalized to the initial weight of the intestinal sample
(Fig. 1B). Mice infected at 1 week of age had the highest number of C. parvum per
gram of intestine, while parasite numbers dropped 10-fold in mice infected at 2 weeks
old (Fig. 1B). Mice inoculated at 3 weeks old had the sharpest decline in C. parvum
infection, with 5 orders of magnitude less C. parvum per gram of intestine than 1-
week-old mice (Fig. 1B). Infection levels remained consistently lower for mice infected
at 4, 5, and 6 weeks of age (Fig. 1B), indicating that mice are most susceptible to C. par-
vum infection within the first 2 weeks of life and experience a drastic reduction in para-
site load when infected after this brief window of susceptibility.

To verify the course of age-dependent gut microbiome maturation in our model,
we collected cecal contents from uninfected mice at time points when they are most
susceptible (1 and 2 weeks of age) or relatively resistant (3 and 6 weeks of age) to infec-
tion (Fig. 1A, Fig. S1) and performed 16S rRNA sequencing analysis. This analysis
revealed drastic changes in the taxonomic composition of microbiota as the mice aged
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(Fig. 1C), similar to observations of previous studies in neonatal mice (10, 23-25). The
microbial communities from 1-week-old mice were the least diverse of all four age
groups (see Fig. S2a in the supplemental material) and were dominated by facultative
anaerobes from the Actinobacillus, Lactobacillus, and Escherichia genera (Fig. 1C,
Fig. S2b and c). By 2 weeks of age, the microbiota had transitioned to mostly strict
anaerobes, including Bacteroides, Parabacteroides, and Clostridium (Fig. 1C). In samples
from 3-week-old and 6-week-old mice, Clostridium remained a significant fraction of
the microbiota, while the relative abundances of Bacteroides and Parabacteroides
decreased along with a concurrent rise of the Blautia and Mucispirillum genera (Fig. 1C,
Fig. S2b and c). When all four age groups were analyzed together, a principal-coordi-
nate analysis (PCoA) plot of weighted Unifrac distances showed distinct clusters for 1-
and 2-week-old samples, while samples from 3- and 6-week-old mice overlapped
(Fig. 2A).

Changes in luminal metabolite composition over the first 6 weeks of life. To
identify metabolites that could influence susceptibility to C. parvum infection, we col-
lected small intestine luminal flush samples from the same mice as the microbiome
analysis and quantified metabolites present using gas chromatography time of flight
mass spectrometry (GC-TOF MS). A principal-component analysis (PCA) plot of metabo-
lite similarities between all samples revealed a similar pattern as that of the micro-
biome Unifrac analysis; metabolites from 1- and 2-week-old mice formed independent
clusters, while those from 3- and 6-week-old mice were interspersed (Fig. 2B).
Hierarchical clustering of the 30 metabolites with the lowest false-discovery rate (FDR)-
corrected P values by one-way analysis of variance (ANOVA) revealed a strong enrich-
ment of fatty acids and their glycerol esters (e.g., myristic acid and monomyristin; pal-
mitic acid and monopalmitin) in 1-week samples only (Fig. 2C). In contrast, several
metabolites, such as 3-hydroxybutyric acid, UDP-N-acetylglucosamine, and glucose-6-
phosphate, were enriched in the first 2 weeks of life but decreased by 3 weeks. As
expected given their overlapping PCA clusters (Fig. 2B), 3-week and 6-week samples
were mostly enriched for the same metabolites (Fig. 2C) compared to those of earlier
time points. However, sugar alcohols, such as erythritol, xylitol, and lyxitol, were gener-
ally more abundant at 3 weeks than at 6 weeks, while amino acids (uracil and glutamic
acid) and bile acids (cholic and deoxycholic acid) were highest at 6 weeks (Fig. 2C).

A similar, but not identical, pattern emerged when Pearson’s correlation was used
to find the top 30 metabolites whose abundances changed linearly over time (i.e.,
were either positively or negatively correlated with age) (Fig. 2D). The same fatty acids
and their glycerol esters that were enriched in 1-week-old samples (Fig. 2C) were nega-
tively correlated with age, with the addition of docosahexaenoic acid and lignoceric
acid (Fig. 2D). Similarly, many of the metabolites enriched at the two later time points
were positively correlated with age, with the cholic and deoxycholic bile acids having
the strongest correlation (Fig. 2D).

Screening for effects of neonatal metabolites on C. parvum growth in vitro. To
determine if any of the metabolites negatively correlated with age (i.e., highest in 1-
week-old samples) were sufficient to enhance C. parvum infection, we screened 43
metabolites for their effect on C. parvum growth in an human ileocecal adenocarci-
noma (HCT-8) cell line (see Table S1 in the supplemental material). All metabolites with
a negative correlation with age with an FDR-corrected P value of <0.05 (Pearson’s test)
were included in the screen except for those that proved insoluble or were not readily
available for purchase. We also excluded metabolites associated with the microbiota of
adult mice that were identified in a previous study comparing germfree to recolonized
mice (26). C. parvum growth was quantified using an image-based assay in which C.
parvum oocysts were added with a single metabolite to HCT-8 cells plated in a 96-well
format. After 24 h of incubation, fixed cells were labeled with Pan-Cp, a polyclonal anti-
body that recognizes all stages of C. parvum (27) and were stained with Hoechst 33342
to visualize host nuclei. The number of C. parvum and host nuclei in each well were
quantified by an automated imaging platform and normalized to dimethyl sulfoxide
(DMSO)-treated control wells. All metabolites were first screened at 0.5mM, a
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FIG 2 Differences in small intestinal metabolites during murine postnatal development. PCoA plot of weighted Unifrac distances between cecal microbiota
samples (A) and PCA plot of small intestinal metabolite differences from the same mice sampled at 1, 2, 3, or 6 weeks of age (B). (C) Hierarchical clustering
of the top 30 metabolites that most significantly differed between groups as analyzed by one-way ANOVA, represented as a heat map with red indicating
relative enrichment and blue indicating relative de-enrichment for the listed metabolites. (D) Bar graph showing the top 30 metabolites with relative
abundances most significantly correlated with age by Pearson’s correlation. Red, negative correlation of metabolite abundance with age; green, positive
correlation of metabolite abundance with age.

concentration that was chosen based on previous metabolite screening studies (28,
29). However, concentrations were lowered to either 0.1 mM or 0.02mM for several
metabolites that demonstrated significant host toxicity at the higher concentration
(Fig. 3, Table 1, and Table S1).

Out of the 43 metabolites screened, 7 significantly inhibited C. parvum growth,
while 15 significantly enhanced C. parvum infection compared with the DMSO control

November/December 2020 Volume 11

Issue 6 €02582-20

mbio.asm.org 5

Downloaded from https://journals.asm.org/journal/mbio on 24 September 2021 by 75.132.44.168.


https://mbio.asm.org

. o
VanDussen et al. mBio

>

2.0 —2.0
DHA

ke

1.5 LEA G i —1.5

[BAIAING |80 ISOH

@ 05mM ® 01mM B 002mM

Host cell survival

T rrrrrriria 0.0

T 1T rrrrrrrrrrrriorid LELLEL LELEL T Trrrrriri
NY2 X002 20NN RRDP PP PP AR DR PN VD oKD DD O g gD

Ratio of C. parvum #
relative to DMSO control

0.0

vy

0.5+ - —0.5
@ 05mM ® 01mM B 002mMm

Ratio of C. parvum #
relative to DMSO control
[EAIAINS |[2D }SOH

Host cell survival

O-CIIIIIIlllllllllllllllllllllllllllllllllllII 0-0
PR 0D VAR D N 0 D020 DA DN DO D DoI D X rD PP D oD P pN & DN

Metabolites Ranked by Abundance at Week 1

FIG 3 Effects of neonatal metabolites on Cryptosporidium growth. Average ratio of C. parvum parasites in treated samples relative to DMSO controls 24
hpi, with metabolites in decreasing order of fold decrease in abundance from mice aged 1week to mice aged 3weeks (A) and decreasing order of
abundance in mice aged 1week (B). Metabolites in green were found to significantly enhance growth, and metabolites in red were found to significantly
inhibit growth. The three metabolites with the highest fold enhancement of growth are labeled, namely, docosahexaenoic acid (DHA), linoleic acid (LA),
and linolenic acid (LnA). Data represent combined mean = SD of three independent experiments, with 2 to 3 technical replicates per experiment. *,
P=0.05; **, P=0.01; ***, P=0.001; ****, P=0.0001. The blue line indicates the mean ratio of treated host cells relative to the DMSO control.

(Fig. 3). Interestingly, all of the inhibitory metabolites were medium- or long-chain sat-
urated fatty acids and/or their glycerol esters as follows: capric acid (C,,,), lauric acid
(Cy5), myristic acid (C,,,,) and monomyristin, palmitic acid (C,4,) and 1-monopalmitin,
and 1-monostearin (C,q,) (Table 1). Not all saturated fatty acids were inhibitory, as
most had no effect, and two, namely, pentadecanoic acid (C;s,) and behenic acid
(C5,.0), modestly enhanced C. parvum growth (Table 1). However, the three most potent
enhancers (1.3x to 1.4x growth) were omega-3 or omega-6 polyunsaturated fatty
acids, namely, docosahexaenoic acid (DHA; C,,,), linolenic acid (LnA; C,45), and linoleic
acid (LA; C,g.,) (Table 1). All the inhibitors and the most effective enhancers (DHA, LA,
and LnA) fell within the top 20 metabolites when ranked based on their abundance
fold change from week 1 to week 3 (Fig. 3A). When ranked by abundance at week 1,
LA and LnA remained in the top 20 metabolites along with all inhibitors except for 1-
monostearin (Fig. 3B). Thus, metabolites may have both protective and detrimental
effects on susceptibility to C. parvum infection in the neonatal gut.

Effects of omega-3 and omega-6 polyunsaturated fatty acids on C. parvum
growth and invasion. As we were most interested in metabolites that may contribute
to enhanced susceptibility to C. parvum in neonates, we investigated whether other
members of the omega-3 and omega-6 fatty acid families could positively affect C. par-
vum growth. Indeed, omega-3 eicosapentaenoic acid (EPA; C,,.s) and omega-6 arachi-
donic acid (AA; Cy.) significantly enhanced C. parvum growth to the same extent as
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TABLE 1 Significant effects of neonatal gut metabolites on C. parvum growth

Rank order of Avg growth ratio

fold change® Metabolite name Concn (mM) (mean = SD)® P value
1 Docosahexaenoic acid 0.1 1.44+0.29 <0.0001
18 Linolenic acid 0.5 1.40 £ 0.02 <0.0001
13 Linoleic acid 0.5 1.33+0.07 <0.0001
35 Dihydroxyacetone 0.5 1.22+0.05 <0.0001
42 Behenic acid 0.02 1.22 +0.08 0.0003
31 Hexadecane 0.5 1.20 £0.07 0.0002
41 Benzylalcohol 0.5 1.19+0.22 0.0006
34 N-acetyl-p-mannosamine 0.5 1.19£0.10 0.0006
32 Pentadecanoic acid 0.1 1.18 £ 0.11 0.0009
23 Glucose-6-phosphate 0.5 1.18 =0.35 0.0022
17 Diphosphoric acid 0.5 1.16 £ 0.24 0.0089
20 Nicotinamide 0.5 1.15*+0.15 0.0150
29 Maltose 0.5 1.14+0.12 0.0310
27 UDP-N-acetylglucosamine 0.5 1.14+0.22 0.0390
15 Oxamic acid 0.5 1.13 +0.07 0.0488
10 1-Monostearin 0.5 0.78+0.13 <0.0001
2 1-Monopalmitin 0.1 0.77 £0.21 <0.0001
19 Palmitic acid 0.1 0.77 =0.07 <0.0001
5 Myristic acid 0.5 0.68 £0.16 <0.0001
6 Lauric acid 0.5 0.61 +0.08 <0.0001
1 Monomyristin 0.5 0.59 £ 0.08 <0.0001
14 Capric acid 0.5 0.32 £0.07 <0.0001

aRank order of metabolites by fold change in abundance from week 1 to week 3 as shown in Table S1.

bRatio of C. parvum growth relative to the DMSO control averaged across three independent experiments, with
two to three technical replicates per experiment, as shown in Fig. 3. Two way ANOVA with Dunnett's test for
multiple comparisons.

DHA, LA, and LnA in a 24-h growth assay (Fig. 4A), indicating that these two classes of
fatty acids have a generally positive effect on C. parvum infection. To investigate
whether omega-3 and omega-6 fatty acids affect the invasion efficiency of C. parvum,
we infected HCT-8 cells with filtered sporozoites and treated them with either DHA, LA,
or LnA during a 2.5-h invasion period. Cells were then extensively washed before fix-
ing, staining, and imaging as described above. All three metabolites significantly
increased the number of C. parvum present in the wells compared with the DMSO con-
trol, with LA and LnA having a slightly stronger effect than DHA (Fig. 4B). In contrast,
parasite numbers did not significantly increase in HCT-8 cells that had been pretreated
with DHA, LA, or LnA for 2 h before infection with filtered sporozoites (Fig. 4B). This
finding suggests that the fatty acids may be directly facilitating sporozoite adhesion or
invasion to host cells, rather than acting through a host signaling pathway to “prime”
the cells for invasion.

To determine if the effects of metabolites on parasite growth may be time depend-
ent, samples infected with filtered sporozoites were treated with LA, LnA, or DHA ei-
ther during invasion (0 to 2.5 hours postinfection [hpi]), after invasion (2.5 to 24 hpi), or
for the duration of the experiment (0 to 24 hpi). All samples were washed extensively
2.5 hpi to remove unattached sporozoites, and the culture medium was replaced with
or without metabolite solution depending on the respective treatment group. After 24
hpi, all samples were fixed, stained, and imaged as described above. For samples
treated with LA, LnA, or DHA, parasite growth was significantly enhanced compared
with the DMSO control when cells were treated from either 0 to 2.5 hpi or 0 to 24 hpi
(Fig. 4C). However, when treatment began after invasion, treatment with LA signifi-
cantly inhibited parasite growth, while treatment with LnA had no effect (Fig. 4C).
Treatment with DHA from 2.5 to 24 hpi increased parasite numbers relative to the con-
trol, but the magnitude of enhanced infection was far lower in samples treated after
invasion than in samples where treatment began 0 hpi (Fig. 4C). These results indicate
that the enhancement of parasite infection resulting from treatment with LA, LnA, and
DHA is dependent on the presence of these metabolites during the first 2.5 hpi. This
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FIG 4 Enhancement of parasite growth and invasion by metabolites and related molecules. (A) Average ratio of
C. parvum parasites 24 hpi in treated samples relative to DMSO controls for the metabolites docosahexaenoic
acid (DHA), linoleic acid (LA), and linolenic acid (LnA) and the related compounds eicosapentaenoic acid (EPA)
and arachidonic acid (AA). (B) Samples were infected with filtered C. parvum sporozoites and washed after a
2.5-h incubation. Average ratio of attached C. parvum parasites relative to DMSO controls compared between
samples that were pretreated with metabolites for 2h and samples with metabolites added immediately after
infection. (C) Average ratio of C. parvum parasites relative to DMSO control in samples infected with filtered
sporozoites and treated with metabolites during invasion (0 to 2.5 hpi), after invasion (2.5 to 24 hpi), and for
the duration of the experiment (0 to 24 hpi). (D) Effects of metabolite treatment on C. parvum growth in air-
liquid interface (ALI) culture determined by the average total C. parvum genomic DNA (gDNA) equivalent per
transwell on days 0, 1, 3, and 5 postinfection. DHA and AA were tested at a final concentration of 0.1 mM, and
all other metabolites were tested at a final concentration of 0.5mM. All data represent combined mean * SD
of three independent experiments, with 2 to 3 technical replicates per experiment, and were analyzed with a
two-way ANOVA followed by a Dunnett's test for multiple comparisons. **, P=0.01; ***, P=0.001; ****,
P=0.0001; n.s., not significant.

result implies that the increased parasite numbers observed at later time points may
be a direct result of the positive effects of metabolite treatment on sporozoite adhe-
sion or invasion.

Because long-term culture and sexual reproduction of C. parvum is not supported
in HCT-8 cells, we tested whether metabolite treatment of parasites grown in a mouse
ileal air-liquid interface (ALI) transwell culture (27) would result in enhanced parasite
infection. To determine this, transwells containing differentiated mouse intestinal epi-
thelial cells (mIECs) were infected with filtered parasites and treated with LA, LnA, or
DHA in both the top and bottom transwell compartments for 3 h. All transwells were
then washed to remove unattached sporozoites, and both the top and bottom com-
partments of each transwell were treated with medium containing either DMSO or
metabolite solution for the duration of the experiment. On days 0, 1, 3, and 5 postin-
fection, DNA samples were collected from transwells, and C. parvum and mIEC
genomic DNA quantities were determined using qPCR and standard curve analysis.
Treatment with LA or DHA significantly increased parasite numbers relative to the
DMSO control at multiple time points, and treatment with LnA significantly enhanced
parasite numbers at all time points compared with the control (Fig. 4D). Metabolite
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treatments did not have adverse effects on epithelial culture, and although they
enhanced cell monolayer densities at some time points, this pattern did not correlate
with the enhanced growth of C. parvum (see Fig. S3 in the supplemental material).
Interestingly, treatment with LnA also increased the fold increase in parasite numbers
from day O to day 5 by an average of 3-fold relative to the DMSO control, suggesting
that the fatty acid may enhance multiple rounds of invasion in long-term culture. As a
result, transwells treated continuously with LnA contained significantly greater quanti-
ties of C. parvum 5 days postinfection than those treated continuously with DMSO
(Fig. 4D).

DISCUSSION

Neonatal animals, including humans, are highly susceptible to Cryptosporidium
infection but quickly become resistant to the parasite as they age. In a neonatal mouse
model of cryptosporidiosis, we found that susceptibility to the pathogen decreases
sharply between 2 and 3 weeks of life, which is concurrent with the cessation of breast-
feeding and transition to solid food. This change in diet correlated with drastic shifts in
the gut microbiota and luminal metabolites, particularly the reduction of fatty acids
typically found in breast milk. Exogenous addition of these fatty acids to in vitro cul-
tures revealed that medium- to long-chain saturated fatty acids tend to inhibit C. par-
vum growth, while omega-3 and omega-6 polyunsaturated fatty acids enhance para-
site invasion.

Previous studies in mice demonstrate that the gut microbiota changes dramatically
during the first few weeks of life, especially following the dietary transition from breast
milk to solid food (10, 24, 25). Specifically, these studies found that neonatal mice were
first colonized by facultative anaerobes Gammaproteobacteria and Lactobacillales,
which were progressively replaced by obligate anaerobes Clostridia and Bacteroidia
during and after weaning (10, 24, 25). We observed similar developmental changes in
the microbiota of our neonatal mice; in the first week of life, Lactobacillus and
Actinobacillus (a Gammaproteobacteria) dominated the community and were replaced
by 2 weeks of age with strict anaerobes, including Clostridium and Bacteroides.
Clostridium remained a significant fraction of the microbial community in mice post-
weaning, while Bacteroides declined over time. Interestingly, a previous study that colon-
ized germfree mice with cecal contents from neonatal (4 to 12day) or adult mice
(7 weeks) found that Clostridia (but not Bacteroides) protected mice colonized with adult
microbiota against the enteric pathogens Salmonella enterica serovar Typhimurium and
Citrobacter rodentium (25). Although the protective mechanism is not fully understood, it
was independent of innate and adaptive immune responses but was modulated by
metabolites, including succinate (25).

Concurrent with the microbial changes over time, the gut metabolome in our mice
also transitioned as they aged; medium- and long-chain fatty acids were abundant in
1- and 2-week-old mice and were gradually replaced with sugar alcohols, amino acids,
and bile salts in the 3- and 6-week-old mice. The abundance of fatty acids in pre-
weaned mice reveals the significant contribution of diet to the overall gut metabo-
lome, as fatty acids are important constituents of breast milk (30-33). In contrast, the
metabolites enriched by week 6 begin to resemble those found in adult mice (26), and
several are metabolic by-products of intestinal bacteria, such as 2,8-hydroxyquinoline
(34) and the secondary bile acid deoxycholic acid (35). Hence, the shift in metabolite
profiles after weaning is likely due to the absence of milk as a nutrient source along
with the production or induction of metabolites by a more mature microbiota. It is im-
portant to note that the neonatal gut microbiome and metabolome profiles may vary
somewhat between different strains and origins of mice. However, given the predict-
able shifts in microbiota composition with age (10, 24, 25) and the universal diet of
neonatal pups (breast milk), we predict that our major findings of changes in commu-
nity structure and metabolite abundances over time will also occur in other mouse
strains.
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Considering the enhanced susceptibility of neonates to C. parvum, we were sur-
prised to find that some medium- to long-chain saturated fatty acids abundant in 1-
week-old neonatal mice actually inhibited the growth of C. parvum in vitro. C. parvum
is thought to lack a system for de novo fatty acid synthesis, instead relying on salvage
from the host (22). It also lacks B-oxidation and cannot use fatty acids as an energy
source (22). However, it contains three isoforms of the enzyme for acyl-coenzyme A
(CoA) addition (acyl-CoA synthase [ACS]) (36) needed for activating fatty acids salvaged
from the host, a fatty acid synthase (FAS1) that functions as an elongase (37), and a
long-chain fatty acid elongase (LCE) (38). Of these enzymes, ACS isoforms prefer satu-
rated substrates of C,, to C,5 and LCE prefers saturated substrates of C,, to C,4 (38).
The loading domain of CpFAST prefers palmitic acid (C,4,), but enzyme activity has
been documented with substrates C,, to C,, as well (39). Given these substrate prefer-
ences, it is somewhat surprising that medium-chain fatty acids, such as lauric acid
(Cy5.), myristic acid (C,4,), and palmitic acid (C,4,), inhibited C. parvum growth in vitro.
One potential explanation for their inhibitory effects could be if these medium-chain
fatty acids inhibit the terminal reductase domain of FAS1, which normally prefers
much longer chain substrates (i.e., >C,,) (37). It is also possible that these fatty acids
integrate into parasite membranes and upset the normal balance of lipids, hence com-
promising cellular functions. These medium-chain fatty acids have also been shown to
inhibit bacterial growth in vitro (40, 41). Among these inhibitory compounds, capric
acid, the strongest growth inhibitor in the 24 h growth assay, has also been shown to
inhibit Candida albicans growth and biofilm formation by altering gene expression
(42), suggesting it has broad cross-phylum activity. Additional studies are necessary to
discern the role that these saturated fatty acid metabolites may have in modulating C.
parvum infection.

In contrast to the inhibitory saturated fatty acids, long-chain, omega-3, or omega-6
polyunsaturated fatty acids, linoleic acid (LA; C,4.,), linolenic acid (LnA; C,45), and doco-
sahexaenoic acid (DHA; C,,,) were all significant enhancers of parasite growth in vitro.
Interestingly, enhancement was also dependent on the timing of exposure; although
pretreatment of host cells had no effect on subsequent infection, exposure during the
first 2.5 h of infection was critical to the enhancing effect. This timing implies that fatty
acid metabolism may not be responsible for the observed increase in parasite infection
since these polyunsaturated fatty acids had minimal effects when added after invasion.
However, these results suggest that polyunsaturated fatty acids may directly enhance
invasion and/or formation of the parasitophorous vacuole that encases the parasite
(12, 13). Since invasion and vacuole membrane formation require reorganization of
host and parasite membranes in a rapid process of envelopment (43-45), the enhanc-
ing effects of these long-chain, unsaturated fatty acids may reflect the important prop-
erties they have on membrane composition, fluidity, and signaling (46, 47).

Although our studies were performed in vitro, they could have important implica-
tions for Cryptosporidium infections in vivo. The human microbiota undergoes similar pre-
dictable transitions as mice, from facultative aerobic bacteria such as Enterobacteriaceae at
birth to organisms that specialize on a milk-based diet, such as Lactobacillus, and then
finally to a more mature, “adult-like” microbiota by 2 to 3 years of age (48-50).
Interestingly, the microbiotas of children breast-feeding at 12 months old are still domi-
nated by Bifidobacterium and Lactobacillus, while the microbiotas of children that have
stopped breast-feeding by this age are enriched in species prevalent in adults such as
Clostridia (48). This information suggests that the main driver of microbiota maturation
is the cessation of breast-feeding and highlights the importance of breast milk in shaping
the overall gut microbiota and metabolome. In our mice, polyunsaturated fatty acids in
the gut lumen decreased significantly following weaning. Although fatty acid profiles in
breast milk vary between species, all mammals produce essential fatty acids LA and LnA
in their breast milk, as well as significant amounts of long-chain unsaturated fatty acids,
such as AA and DHA (33). Our finding that LA, LnA, AA, and DHA all enhance sporozoite
invasion suggests the possibility that human infants who are nursing may be more
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susceptible to Cryptosporidium infection due to higher levels of these metabolites in their
guts in comparison to older, weaned children. Unfortunately, due to difficulty in sampling
and variability in intestinal contents over a 24-hour period, we cannot say whether the
concentration of polyunsaturated fatty acids needed to enhance C. parvum growth in our
in vitro assays would be physiologically relevant in vivo. However, future studies in mice
could test whether exogenous administration of these fatty acids, either directly through
gavage or indirectly by changing the maternal diet, would affect infection levels.

Although our study suggests a role for gut metabolites in modulating C. parvum
infection, there are likely other factors that contribute to the increased susceptibility of
neonatal mice and humans to Cryptosporidium sp. In particular, maturation of the
immune system plays an important role in the decrease of susceptibility to infection
during early life. In regard to Cryptosporidium sp. specifically, CD103* CD11c™* dendritic
cells (DCs) are found at low levels in neonatal mice and increase with maturation and
during infection. Selective depletion of CD103" dendritic cells in Batf3 knockout mice
(51), or increase in their number by delivery of the Flt-3 ligand (52), suggest that
changes in these innate immune cells may underlie changes in susceptibility to C. par-
vum during maturation. Interestingly, administration of poly(-C) to neonatal mice
stimulated immune responses, including expanded DC functions, that required the
presence of gut flora (53), indicating that the microbiota and immune function are
tightly linked during early development. Thus, the findings of our study provide a
framework for future studies to tease apart the potential effects of diet, the microbiota,
and the immune system on the susceptibility of infants to cryptosporidiosis and possi-
bly other enteric infections.

MATERIALS AND METHODS

Neonatal mouse model of C. parvum infection. For infections of neonatal mice performed at the
University of Arizona, C. parvum (lowa strain) (54) oocysts were maintained by repeated passage in new-
born Cryptosporidium-free Holstein bull calves (55) and purified from fecal material by sucrose density
gradient centrifugation, as previously described (56).

To assess C. parvum infection levels with age in vivo, groups of 5 to 10 8-day-old specific-pathogen-
free ICR mice (Envigo) were used. All mice used in the present study were maintained in biosafety level
2 (BSL2) biocontainment at the University of Arizona in accordance with the PHS Guide for the Care and
Use of Laboratory Animals and IACUC approval.

Neonatal mice were randomly assigned to litters as detailed in Fig. S1. At 1-week intervals after birth,
mice were gavaged with 5 x 10* C. parvum (lowa strain) oocysts (n=10 mice each for 1 and 2 weeks of
age, n=>5 mice each for 3 to 6 weeks of age). At 5 days postinfection (92 to 94 h postinfection), the entire
intestine was extracted from each mouse, weighed, and then homogenized using ceramic beads in the
Bead Ruptor4 system (Omni International, Kennesaw, GA). DNA was extracted using the QlAamp fast
DNA stool minikit (Qiagen, Gaithersburg, MD) with the following modifications: after the addition of
InhibitEx buffer, the samples were incubated at 95°C (5 min), followed by 5 freeze-thaw cycles using lig-
uid nitrogen and a 37°C water bath. Total DNA in the samples was quantified by a Nanodrop instrument
(Thermo Scientific, Waltham, MA).

Quantitative PCR (qPCR) for the C. parvum 18S rRNA was performed using the following primers:
ChvF18S (5'-CAATAGCGTATATTAAAGTTGTTGCAGTT-3’) and ChvR18S (5'-CTGCTTTAAGCACTCTAATT
TTCTCAAA-3') (57) For qPCR, each 25-ul reaction contained a final concentration of 100 nM for both for-
ward and reverse primers (Invitrogen, Grand Island, NY) and 12.5 ul SYBR green fast mix (Quantabio,
Gaithersburg, MD). Genomic DNA (2 ul) was added, and the qPCR was performed in an ABI StepOnePlus
real-time PCR system (Applied Biosystems, Grand Island, NY) with the following cycling conditions: 10-
min incubation at 94°C, followed by 45 cycles at 94°C for 10 sec, 54°C for 30sec, and 72°C for 10 sec.
Each sample was run in triplicate. A control with no template was run concurrently and was consistently
negative. The number of C. parvum genomic equivalents was calculated for each sample based on a
standard curve using DNA from known quantities of C. parvum oocysts and divided by the original
weight of the intestinal sample to obtain the number of C. parvum organisms per gram intestine.

Sample collection for 16S sequencing and metabolomics. Six pregnant ICR dams with litter sizes
of 10 pups each were obtained from the same source (Envigo) as that used for the neonatal infection
experiment. Dams and the resulting pups were maintained in a specific-pathogen-free barrier facility at
Washington University School of Medicine with a strict 12-h light cycle and ad libitum access to food
and water. Mice were housed in complete autoclaved cage assemblies containing the same chow
(Envigo NIH-31 Irradiated Modified Open Formula Mouse/Rat Diet 7913) and bedding (Envigo Teklad
7097 1/4" Corncob bedding) used in the neonatal infection experiment. To minimize experimental varia-
tion that could potentially arise from single cages or dams, 2 pups were randomly selected from each lit-
ter per time point (total of n=12 per time point) at 1 week, 2 weeks, 3 weeks, 4 weeks, and 6 weeks of
age. Weaning was performed as usual at 3 weeks of age, with pups of the same sex housed only with
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littermates in fresh autoclaved cage assemblies. All procedures were approved by the Institutional
Animal Care and Use Committee at Washington University School of Medicine. For the collection of
small intestinal luminal flushings for metabolomics, pups were euthanized and then the entire length of
small intestine was dissected intact and flushed with 500 ul of sterile phosphate-buffered saline (PBS)
using a 1-ml syringe tipped with a blunt needle; small intestinal luminal contents from the flush were
collected directly into a tared cryotube, weighed, and snap-frozen in liquid nitrogen. For collection of
cecal contents for 16S rRNA sequencing, the intact cecum was dissected and placed into a tared cryo-
tube (pups aged 1, 2, or 3 weeks), or cecal contents were collected using a sterilized spatula and placed
into a tared cryotube (pups aged 4 or 6 weeks); the material was weighed and then snap-frozen in liquid
nitrogen.

16S sequencing and analysis. DNA from cecal contents was isolated using the QlAamp DNA stool
minikit (Qiagen). The Washington University Genome Technology Access Center performed PCR amplifi-
cation of all nine 16S variable regions with the Fluidigm access array system, by indexing, pooling, and
sequencing with an Illlumina MiSeq sequencer, as previously described (58). Sequencing data analysis ei-
ther used the V1 to V9 regions and the MVRSION pipeline (59) or the V4 region and QIIME pipeline ver-
sion 1.9.0 (60), as previously described (58). The operational taxonomic unit (OTU) table resulting from
QIIME analysis was used as the input for linear discriminant analysis (LDA) effect size (LEfSe) (61) (http://
huttenhower.sph.harvard.edu/lefse/) to identify statistically significant, differentially abundant taxa
between the 1-week-old and 6-week-old mice.

Metabolite profiling and analysis. Untargeted metabolomics of the small intestinal luminal flush-
ing samples by GC-TOF mass spectrometry was performed by the West Coast Metabolomics Center
using the primary metabolism platform and a Leco Pegasus IV mass spectrometer. Of the 759 metabo-
lites identified, 213 were annotated and used for further analysis. Data were normalized across samples
by averaged week 1 values, before being log,-transformed and autoscaled. Data normalization and
downstream univariate, multivariate, and clustering analyses were performed with MetaboAnalyst 3.0
(https://www.metaboanalyst.ca) (62).

HCT-8 cell culture and infection. For in vitro infection studies in human cell lines, C. parvum (AUCP-
1 strain) oocysts were obtained from the Witola lab at the University of Illinois at Urbana-Champaign,
where they were maintained by repeated passage in male Holstein calves and purified from fecal mate-
rial as previously described (63). Animal procedures were approved by the Institutional Animal Studies
Committee at the University of lllinois at Urbana-Champaign. Purified oocysts were stored at 4°C in PBS
plus 50 mM Tris and 10mM EDTA (pH 7.2) for up to 6 months before use.

Human ileocecal adenocarcinoma cells (HCT-8 cells; ATCC CCL-244) were maintained in RPMI 1640
medium (Gibco; ATCC modification) supplemented with 10% fetal bovine serum. Cells were confirmed
to be mycoplasma free with the e-Myco plus Mycoplasma PCR detection kit (Boca Scientific).

C. parvum growth assay for initial metabolite screen. Metabolites were chosen for the screen
based on a negative Pearson’s coefficient and an FDR P value of =0.05. Metabolites that were insoluble
or not readily available for purchase were excluded. We also excluded metabolites that had previously
been shown to be present in the gut metabolome of germfree mice and, thus, not likely produced or
induced by the microbiota (26). In total, we tested 43 metabolites for their effects on C. parvum growth
(Table S1).

All metabolites (Sigma-Aldrich) were reconstituted as 100 mM stock solutions in DMSO with the fol-
lowing exceptions: glucose-6-phosphate was dissolved in filtered PBS, phosphoethanolamine and glyc-
erol-alpha-phosphate were dissolved in filtered dH,O, and cholesterol and arachidic acid were dissolved
in filtered ethanol. HCT-8 cells were plated at 2 x 10° cells per well in 96-well optically clear-bottomed
plates (Greiner Bio-One) and infected with 1.2 x 10* to 5 x 10* C. parvum oocysts (AUCP-1 strain) per
well after 24 h of cell growth. Metabolites were diluted in culture medium and immediately added to
the wells following the addition of oocysts for a final metabolite concentration of 0.02mM to 0.5 mM
(depending on the metabolite) (Table S1) and 0.5% DMSO (three technical replicate wells per metabo-
lite). Infected control wells containing only 0.5% DMSO media were included on each plate. At 24 h after
infection, wells were fixed in 4% formaldehyde for 10 min, washed twice with PBS, and then permeabil-
ized and blocked for 20 min in blocking buffer composed of 0.1% Triton X-100 and 1% bovine serum al-
bumin (BSA) in PBS. C. parvum bacteria were labeled with polyclonal rabbit anti-Cp antibody (27) diluted
1:2,000 in blocking buffer, followed by goat anti-rabbit Alexa Fluor 488 (1:1,000, Thermo Fisher
Scientific). Host nuclei were stained with Hoechst 33342 (5 wg/ml; Thermo Fisher Scientific).

Plates were imaged with a 10x objective on a BioTek Cytation 3 cell imager (9 images per well ina 3
by 3 grid). Gen5 software version 5.0.2 was used to quantify the total number of parasites (puncta in the
green fluorescent protein [GFP] channel) and host cells (nuclei in the 4',6-diamidino-2-phenylindole
[DAPI] channel) in images from each well. Relative parasite growth and host cell viability for each metab-
olite were calculated as a ratio of the mean number of C. parvum parasites or host cells, respectively, in
the treated versus DMSO control groups averaged across three independent experiments, with three
technical replicates per experiment. Statistical analyses were performed in GraphPad Prism 8 using a
two-way ANOVA followed by a Dunnett’s test for multiple comparisons, in which each metabolite was
compared to the DMSO control.

C. parvum invasion assay. HCT-8 cells were plated at 2 x 10° cells per well in 96-well optically clear-
bottomed plates (Greiner Bio-One) and cultured for 24 h as described above. To determine the effect of
metabolite treatment on host cells before the addition of parasites, metabolite solutions diluted in cul-
ture media were added to half of the plate for a final concentration of 0.1 mM to 0.5mM (depending on
the metabolite) (Table S1) and 0.5% DMSO for 2 h and then washed 3x with PBS. Bleached C. parvum
oocysts (AUCP-1 strain) were excysted for 1h at 37°C in a 0.75% sodium taurocholate solution and
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passed through a 1-um filter to remove unexcysted oocysts. All wells were infected with approximately
2 x 10° excysted sporozoites. Metabolite solutions diluted in culture media were then added to the sec-
ond half of the plate for a final concentration of 0.1 mM to 0.5mM and 0.5% DMSO. Control wells con-
taining only 0.5% DMSO culture media were included for each half of the plate at each time point. After
2.5 h of infection, wells were fixed and stained with polyclonal rabbit anti-Cp antibody (1:5,000), goat
anti-rabbit Alexa Fluor 488 (1:1,000; Thermo Fisher Scientific), and Hoescht 33342 (5 ug/ml; Thermo
Fisher Scientific) as detailed above.

Parasites and host cells were imaged and quantified using the same protocol as the C. parvum
growth assay. Relative parasite growth and host cell viability for each metabolite were calculated as a ra-
tio of the mean number of C. parvum parasites or host cells, respectively, in the treated versus DMSO
control groups averaged across three independent experiments, with three technical replicates per
experiment. Statistical analyses were performed in GraphPad Prism 8 using a two-way ANOVA followed
by a Dunnett’s test for multiple comparisons, in which each metabolite was compared to the DMSO con-
trol within each treatment group.

C. parvum invasion wash-out assay. HCT-8 cells were plated 2 x 10° cells per well in a clear-bot-
tomed 96-well plate. After 24 h of cell growth, cells were infected with 1 x 10° filtered, excysted sporo-
zoites per well. Immediately after infection, metabolite solutions (0.5mM except for DHA that was
0.1 mM) or DMSO control were added to wells. After 2.5 h of incubation, all wells were washed 2x with
PBS, and metabolite solutions or DMSO control were added to wells as appropriate for each group. At
24 hpi, all wells were fixed and stained as described for the C. parvum invasion assay above.

Parasites and host cells were imaged and quantified as detailed in the C. parvum growth assay.
Relative parasite growth and host cell viability for each metabolite were calculated as a ratio of the
mean number of C. parvum parasites or host cells, respectively, in the treated versus DMSO control
groups averaged across three independent experiments, with three technical replicates per experiment.
Statistical analyses were performed in GraphPad Prism 8 using a two-way ANOVA followed by a
Dunnett’s test for multiple comparisons, in which each metabolite was compared to the DMSO control
within each treatment group.

Quantification of C. parvum in metabolite-treated air-liquid interface transwells. Mouse intesti-
nal epithelial cell (mIEC) monolayers were cultured on transwells with an air-liquid interface (ALI) as pre-
viously described (27, 64). Briefly, irradiated 3T3 mouse fibroblast cells (CRL-1658 ATCC) were plated on
transwells (polyester membrane, 0.4-um pore; Corning Costar) coated with 10% Matrigel (Corning) and
cultured at 37°C for approximately 24 h in Dulbecco’s modified Eagle’s medium (DMEM; high glucose;
D6429; Sigma) with 10% fetal bovine serum (Sigma) and 1x penicillin/streptomycin (Sigma). Primary
mouse ileal stem cells were harvested from 3-day-old spheroid cultures in Matrigel, dissociated with
trypsin as previously described (65), and plated onto irradiated i3T3 monolayers at 5 x 10* mIECs per
transwell. mIEC monolayers were cultured with 50% L-WRN-conditioned medium (66) and 10 uM Y-
27632 ROCK inhibitor (Torcis Bioscience) in both the top and bottom compartments of the transwell for
7 days, after which the medium was removed from the top compartment to create the air-liquid inter-
face. Three days after removal of the top medium, each transwell was infected with 2 x 10° filtered,
excysted sporozoites, and DMSO control or metabolite solutions (0.5mM except for DHA that was
0.1 mM) were added to both the top (50 ul) and bottom (400 wl) compartments of the transwell. After
3 h of incubation, the top medium was removed, and each transwell was washed with PBS. Each trans-
well was then treated continuously with either DMSO control or metabolite solution in both the top and
bottom chamber for the duration of the experiment.

DNA from transwells was collected and extracted using the QIAmp DNA minikit (Qiagen). qPCR was
performed using the QuantStudio 3 system with cycling conditions of a 10-min incubation at 95°C and
then 40 cycles at 95°C for 15 s and 60°C for 1 min, followed by a continuous melt curve analysis to iden-
tify samples with evidence of nonspecific amplification. Each reaction contained 2 ul purified transwell
DNA (diluted 1:5) as a template, 10 ul SYBR green QuickStart Tag ReadyMix (Sigma), and 1.6 ul of 5 uM
primer solution targeting C. parvum GAPDH (forward, 5'-CGGATGGCCATACCTGTGAG-3’; reverse, 5'-
GAAGATGCGCTGGGAACAAC-3') (27) or mouse GAPDH (forward, 5'-GCCATGAGTGGACCCTTCTT-3';
reverse, 5'-GAAAACACGGGGGCAATGAG-3') (27). Each transwell sample was run with technical dupli-
cates, and negative (water) controls were included in each plate.

C. parvum and mIEC genomic DNA (gDNA) quantities per transwell were determined via the
QuantStudio Design & Analysis New (DA2) software using standard curves for C. parvum and mouse
gDNA, respectively. Total C. parvum or mIEC gDNA per transwell was calculated as an average of gDNA
quantities per transwell across three independent experiments with two to three technical replicates per
experiment. Statistical analyses were performed in GraphPad Prism 8 using a two-way ANOVA followed
by a Dunnett’s test for multiple comparisons, in which each metabolite was compared with the DMSO
control within each time point.

Data availability. The 16S rRNA sequencing reads are available in the ArrayExpress database (http://
www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-9100. All remaining data discussed in this
report are found in the main figures or the supplemental materials.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 0.8 MB.
FIG S2, TIF file, 2.9 MB.

November/December 2020 Volume 11 Issue 6 e02582-20 mbio.asm.org 13

Downloaded from https://journal s.asm.org/journal/mbio on 24 September 2021 by 75.132.44.168.


http://www.ebi.ac.uk/arrayexpress
http://www.ebi.ac.uk/arrayexpress
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9100
https://mbio.asm.org

VanDussen et al.

FIG S3, TIF file, 0.1 MB.
TABLE S1, XLSX file, 0.02 MB.

ACKNOWLEDGMENTS
We are grateful to William Witola, University of lllinois at Urbana-Champaign, for
providing the C. parvum oocysts used here; Megan Baldridge for helpful advice; and
Soumya Ravindran for cell culture support.
Support was provided in part by grants from the NIH (Al 145496 to L.D.S.) and USDA
NIFA project number ARZT-5704210-A50-133. K.L.V. was supported by NIH grant
DK109081.
We thank the Genome Technology Access Center (GTAC) in the Department of
Genetics at Washington University School of Medicine for help with 16S rRNA
sequencing and analysis. The GTAC is partially supported by NCI Cancer Center support
grant number P30 CA91842 to the Siteman Cancer Center and by ICTS/CTSA grant
number UL1TR002345 from the National Center for Research Resources (NCRR), a
component of the National Institutes of Health (NIH), and NIH Roadmap for Medical
Research.
This publication is solely the responsibility of the authors and does not necessarily
represent the official view of NCRR or NIH.

REFERENCES

1.

November/December 2020 Volume 11

Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam
S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso
PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurth T,
Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S,
Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A,
Mandomando I, Nhampossa T, Acacio S, Biswas K, O'Reilly CE, Mintz ED,
Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM.
2013. Burden and aetiology of diarrhoeal disease in infants and young
children in developing countries (the Global Enteric Multicenter Study,
GEMS): a prospective, case-control study. Lancet 382:209-222. https://doi
.org/10.1016/50140-6736(13)60844-2.

. Kotloff KL. 2017. The burden and etiology of diarrheal illness in develop-

ing countries. Pediatr Clin North Am 64:799-814. https://doi.org/10.1016/
j.pcl.2017.03.006.

. Fayer R. 2004. Cryptosporidium: a water-borne zoonotic parasite. Vet Par-

asitol 126:37-56. https://doi.org/10.1016/j.vetpar.2004.09.004.

. Peng MM, Xiao L, Freeman AR, Arrowood MJ, Escalante AA, Weltman AC,

Ong CSL, Mac Kenzie WR, Lal AA, Beard CB. 1997. Genetic polymorphism
among Cryptosporidium parvum isolates: evidence of two distinct human
transmission cycles. Emerg Infect Dis 3:567-573. https://doi.org/10.3201/
€id0304.970423.

. Feng Y, Ryan UM, Xiao L. 2018. Genetic diversity and population structure

of Cryptosporidium. Trends Parasitol 34:997-1011. https://doi.org/10
.1016/j.pt.2018.07.009.

. Feng Y, Tiao N, Li N, Hlavsa M, Xiao L. 2014. Multilocus sequence typing of

an emerging Cryptosporidium hominis subtype in the United States. J
Clin Microbiol 52:524-530. https://doi.org/10.1128/JCM.02973-13.

. Checkley W, White AC, Jr., Jaganath D, Arrowood MJ, Chalmers RM, Chen

XM, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, Huston CD, Kotloff KL,
Kang G, Mead JR, Miller M, Petri WA, Jr., Priest JW, Roos DS, Striepen B,
Thompson RC, Ward HD, Van Voorhis WA, Xiao L, Zhu G, Houpt ER. 2015.
A review of the global burden, novel diagnostics, therapeutics, and vac-
cine targets for cryptosporidium. Lancet Infect Dis 15:85-94. https://doi
.org/10.1016/51473-3099(14)70772-8.

. Sherwood D, Angus KW, Snodgrass DR, Tzipori S. 1982. Experimental

cryptosporidiosis in laboratory mice. Infect Immun 38:471-475. https:/
doi.org/10.1128/1A1.38.2.471-475.1982.

. Zambriski JA, Nydam DV, Bowman DD, Bellosa ML, Burton AJ, Linden TC,

Liotta JL, Ollivett TL, Tondello-Martins L, Mohammed HO. 2013. Descrip-
tion of fecal shedding of Cryptosporidium parvum oocysts in experimen-
tally challenged dairy calves. Parasitol Res 112:1247-1254. https://doi
.org/10.1007/500436-012-3258-2.

. Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S, Dejardin F,

Sparwasser T, Bérard M, Cerf-Bensussan N, Eberl G. 2019. A weaning reac-
tion to microbiota is required for resistance to immunopathologies in the

Issue 6 e02582-20

20.

21.

mBio’

adult. Immunity 50:1276-1288.e5. https://doi.org/10.1016/j.immuni.2019
.02.014.

. Subramanian S, Hug S, Yatsunenko T, Haque R, Mahfuz M, Alam MA,

Benezra A, DeStefano J, Meier MF, Muegge BD, Barratt MJ, VanArendonk
LG, Zhang Q, Province MA, Petri WA, Jr., Ahmed T, Gordon JI. 2014. Persis-
tent gut microbiota immaturity in malnourished Bangladeshi children.
Nature 510:417-421. https://doi.org/10.1038/nature13421.

. Current WL, Reese NC. 1986. A comparison of endogenous development

of three isolates of Cryptosporidium in suckling mice. J Protozool
33:98-108. https://doi.org/10.1111/j.1550-7408.1986.tb05567 X.

. Umemiya R, Fukuda M, Fujisaki K, Matsui T. 2005. Electron microscopic

observation of the invasion process of Cryptosporidium parvum in severe
combined immunodeficiency mice. J Parasitol 91:1034-1039. https://doi
.0rg/10.1645/GE-508R.1.

. Ras R, Huynh K, Desoky E, Badawy A, Widmer G. 2015. Perturbation of the

intestinal microbiota of mice infected with Cryptosporidium parvum. Int J
Parasitol 45:567-573. https://doi.org/10.1016/j.ijpara.2015.03.005.

. Mammeri M, Chevillot A, Thomas M, Julien C, Auclair E, Pollet T, Polack B,

Vallee I, Adjou KT. 2019. Cryptosporidium parvum-infected neonatal mice
show gut microbiota remodelling using high-throughput sequencing
analysis: preliminary results. Acta Parasitol 64:268-275. https://doi.org/10
.2478/511686-019-00044-w.

. Oliveira BCM, Widmer G. 2018. Probiotic product enhances susceptibility

of mice to cryptosporidiosis. Appl Environ Microbiol 84:€01408-18.
https://doi.org/10.1128/AEM.01408-18.

. Harp JA, Wannemuehler MW, Woodmansee DB, Moon HW. 1988. Suscep-

tibility of germfree or antibiotic-treated adult mice to Cryptosporidium
parvum. Infect Immun 56:2006-2010. https://doi.org/10.1128/IA1.56.8
.2006-2010.1988.

. Charania R, Wade BE, McNair NN, Mead JR. 2020. Changes in the micro-

biome of Cryptosporidium-infected mice correlate to differences in sus-
ceptibility and infection levels. Microorganisms 8:879. https://doi.org/10
.3390/microorganisms8060879.

. Chappell CL, Okhuysen PC, Langer-Curry R, Widmer G, Akiyoshi DE,

Tanriverdi S, Tzipori S. 2006. Cryptosporidium hominis: experimental chal-
lenge of healthy adults. Am J Trop Med Hyg 75:851-857. https://doi.org/
10.4269/ajtmh.2006.75.851.

Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto
CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear
PH, Konfortov BA, Spriggs HF, Lakshminarayan I, Anantharaman V,
Aravind L, Kapur V. 2004. Complete genome sequence of the apicom-
plexan, Cryptosporidium parvum. Science 304:441-445. https://doi.org/10
.1126/science.1094786.

Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque
P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL,

mbio.asm.org 14

Downloaded from https://journal s.asm.org/journal/mbio on 24 September 2021 by 75.132.44.168.


https://doi.org/10.1016/S0140-6736(13)60844-2
https://doi.org/10.1016/S0140-6736(13)60844-2
https://doi.org/10.1016/j.pcl.2017.03.006
https://doi.org/10.1016/j.pcl.2017.03.006
https://doi.org/10.1016/j.vetpar.2004.09.004
https://doi.org/10.3201/eid0304.970423
https://doi.org/10.3201/eid0304.970423
https://doi.org/10.1016/j.pt.2018.07.009
https://doi.org/10.1016/j.pt.2018.07.009
https://doi.org/10.1128/JCM.02973-13
https://doi.org/10.1016/S1473-3099(14)70772-8
https://doi.org/10.1016/S1473-3099(14)70772-8
https://doi.org/10.1128/IAI.38.2.471-475.1982
https://doi.org/10.1128/IAI.38.2.471-475.1982
https://doi.org/10.1007/s00436-012-3258-2
https://doi.org/10.1007/s00436-012-3258-2
https://doi.org/10.1016/j.immuni.2019.02.014
https://doi.org/10.1016/j.immuni.2019.02.014
https://doi.org/10.1038/nature13421
https://doi.org/10.1111/j.1550-7408.1986.tb05567.x
https://doi.org/10.1645/GE-508R.1
https://doi.org/10.1645/GE-508R.1
https://doi.org/10.1016/j.ijpara.2015.03.005
https://doi.org/10.2478/s11686-019-00044-w
https://doi.org/10.2478/s11686-019-00044-w
https://doi.org/10.1128/AEM.01408-18
https://doi.org/10.1128/IAI.56.8.2006-2010.1988
https://doi.org/10.1128/IAI.56.8.2006-2010.1988
https://doi.org/10.3390/microorganisms8060879
https://doi.org/10.3390/microorganisms8060879
https://doi.org/10.4269/ajtmh.2006.75.851
https://doi.org/10.4269/ajtmh.2006.75.851
https://doi.org/10.1126/science.1094786
https://doi.org/10.1126/science.1094786
https://mbio.asm.org

Gut metabolites influence cryptosporidiosis

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32

33.

34.

35.

36.

37.

38.

39.

November/December 2020 Volume 11

Abrahamsen MS, Kapur V, Tzipori S, Buck GA. 2004. The genome of Cryp-
tosporidium hominis. Nature 431:1107-1112. https://doi.org/10.1038/
nature02977.

Rider SD, Jr., Zhu G. 2010. Cryptosporidium: genomic and biochemical
features. Exp Parasitol 124:2-9. https://doi.org/10.1016/j.exppara.2008.12
.014.

Singer JR, Blosser EG, Zindl CL, Silberger DJ, Conlan S, Laufer VA, DiToro
D, Deming C, Kumar R, Morrow CD, Segre JA, Gray MJ, Randolph DA,
Weaver CT. 2019. Preventing dysbiosis of the neonatal mouse intestinal
microbiome protects against late-onset sepsis. Nat Med 25:1772-1782.
https://doi.org/10.1038/s41591-019-0640-y.

Knoop KA, Gustafsson JK, McDonald KG, Kulkarni DH, Coughlin PE,
McCrate S, Kim D, Hsieh CS, Hogan SP, Elson CO, Tarr Pl, Newberry RD.
2017. Microbial antigen encounter during a preweaning interval is critical
for tolerance to gut bacteria. Sci Immunol 2:eaao1314. https://doi.org/10
.1126/sciimmunol.aao1314.

Kim YG, Sakamoto K, Seo SU, Pickard JM, Gillilland MG, lll, Pudlo NA,
Hoostal M, Li X, Wang TD, Feehley T, Stefka AT, Schmidt TM, Martens EC,
Fukuda S, Inohara N, Nagler CR, Nunez G. 2017. Neonatal acquisition of
Clostridia species protects against colonization by bacterial pathogens.
Science 356:315-319. https://doi.org/10.1126/science.aag2029.
Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E, Koga Y, Benno
Y. 2012. Impact of intestinal microbiota on intestinal luminal metabo-
lome. Sci Rep 2:233. https://doi.org/10.1038/srep00233.

Wilke G, Funkhouser-Jones LJ, Wang Y, Ravindran S, Wang Q, Beatty WL,
Baldridge MT, VanDussen KL, Shen B, Kuhlenschmidt MS, Kuhlenschmidt
TB, Witola WH, Stappenbeck TS, Sibley LD. 2019. A stem-cell-derived plat-
form enables complete Cryptosporidium development in vitro and
genetic tractability. Cell Host Microbe 26:123-134.e8. https://doi.org/10
.1016/j.chom.2019.05.007.

Kaiko GE, Ryu SH, Koues Ol, Collins PL, Solnica-Krezel L, Pearce EJ, Pearce
EL, Oltz EM, Stappenbeck TS. 2016. The colonic crypt protects stem cells
from microbiota-derived metabolites. Cell 165:1708-1720. https://doi.org/
10.1016/j.cell.2016.05.018.

Steed AL, Christophi GP, Kaiko GE, Sun L, Goodwin VM, Jain U, Esaulova E,
Artyomov MN, Morales DJ, Holtzman MJ, Boon ACM, Lenschow DJ,
Stappenbeck TS. 2017. The microbial metabolite desaminotyrosine pro-
tects from influenza through type | interferon. Science 357:498-502.
https://doi.org/10.1126/science.aam5336.

Qian L, Zhao A, Zhang Y, Chen T, Zeisel SH, Jia W, Cai W. 2016. Metabolo-
mic approaches to explore chemical diversity of human breast-milk, for-
mula milk and bovine milk. Int J Mol Sci 17:2128. https://doi.org/10.3390/
ijms17122128.

Smilowitz JT, O'Sullivan A, Barile D, German JB, Lonnerdal B, Slupsky CM.
2013. The human milk metabolome reveals diverse oligosaccharide pro-
files. J Nutr 143:1709-1718. https://doi.org/10.3945/jn.113.178772.
Oosting A, Verkade HJ, Kegler D, van de Heijning BJ, van der Beek EM.
2015. Rapid and selective manipulation of milk fatty acid composition in
mice through the maternal diet during lactation. J Nutr Sci 4:e19. https://
doi.org/10.1017/jns.2015.13.

Neville MC, Picciano MF. 1997. Regulation of milk lipid secretion and com-
position. Annu Rev Nutr 17:159-184. https://doi.org/10.1146/annurev
.nutr.17.1.159.

Hubbard TD, Liu Q, Murray IA, Dong F, Miller C, Ill, Smith PB, Gowda K,
Lin JM, Amin S, Patterson AD, Perdew GH. 2019. Microbiota metabo-
lism promotes synthesis of the human Ah receptor agonist 2,8-dihy-
droxyquinoline. J Proteome Res 18:1715-1724. https://doi.org/10
.1021/acs.jproteome.8b00946.

Ridlon JM, Kang D-J, Hylemon PB. 2006. Bile salt biotransformations by
human intestinal bacteria. J Lipid Res 47:241-259. https://doi.org/10
.1194/jIr.R500013-JLR200.

Guo F, Zhang H, Payne HR, Zhu G. 2016. Differential gene expression and
protein localization of Cryptosporidium parvum fatty acyl-CoA synthetase
isoforms. J Eukaryot Microbiol 63:233-246. https://doi.org/10.1111/jeu
12272

Zhu G, Shi X, Cai X. 2010. The reductase domain in a type | fatty acid syn-
thase from the apicomplexan Cryptosporidium parvum: restricted sub-
strate preference towards very long chain fatty acyl thioesters. BMC Bio-
chem 11:46. https://doi.org/10.1186/1471-2091-11-46.

Fritzler JM, Millership JJ, Zhu G. 2007. Cryptosporidium parvum long-
chain fatty acid elongase. Eukaryot Cell 6:2018-2028. https://doi.org/10
.1128/EC.00210-07.

Zhu G, Li Y, Cai X, Millership JJ, Marchewka MJ, Keithly JS. 2004. Expres-
sion and functional characterization of a giant type | fatty acid synthase

Issue 6 e02582-20

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

mBio’

(CpFAS1) gene from Cryptosporidium parvum. Mol Biochem Parasitol
134:127-135. https://doi.org/10.1016/j.molbiopara.2003.11.011.

Huang CB, Alimova Y, Myers TM, Ebersole JL. 2011. Short- and medium-
chain fatty acids exhibit antimicrobial activity for oral microorganisms.
Arch Oral Biol 56:650-654. https://doi.org/10.1016/j.archoralbio.2011.01
.011.

Marounek M, Skrivanova E, Rada V. 2003. Susceptibility of Escherichia coli
to C,-C,, fatty acids. Folia Microbiol 48:731-735. https://doi.org/10.1007/
BF02931506.

Jadhav A, Mortale S, Halbandge S, Jangid P, Patil R, Gade W, Kharat K,
Karuppayil SM. 2017. The dietary food components capric acid and ca-
prylic acid inhibit virulence factors in Candida albicans through multitar-
geting. J Med Food 20:1083-1090. https://doi.org/10.1089/jmf.2017.3971.
Chen X-M, O'Hara SP, Huang BQ, Nelson JB, Lin JJ-C, Zhu G, Ward HD,
LaRusso NF. 2004. Apical organelle discharge by Cryptosporidium par-
vum is temperature, cytoskeleton, and intracellular calcium dependent
and required for host cell invasion. Infect Immun 72:6806-6816. https://
doi.org/10.1128/1A1.72.12.6806-6816.2004.

Elliott DA, Clark DP. 2000. Cryptosporidium parvum induces host cell actin
accumulation at the host-parasite interface. Infect Immun 68:2315-2322.
https://doi.org/10.1128/iai.68.4.2315-2322.2000.

Wetzel DM, Schmidt J, Kuhlenschmidt M, Dubey JP, Sibley LD. 2005. Glid-
ing motility leads to active cellular invasion by Cryptosporidium parvum
sporozoites. Infect Immun 73:5379-5387. https://doi.org/10.1128/IA1.73.9
.5379-5387.2005.

Stubbs CD, Smith AD. 1984. The modification of mammalian membrane
polyunsaturated fatty acid composition in relation to membrane fluidity
and function. Biochim Biophys Acta 779:89-137. https://doi.org/10.1016/
0304-4157(84)90005-4.

Schmitz G, Ecker J. 2008. The opposing effects of n-3 and n-6 fatty acids.
Prog Lipid Res 47:147-155. https://doi.org/10.1016/j.plipres.2007.12.004.
Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y,
Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D,
Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X,
Madsen L, Kristiansen K, Dahlgren J, Wang J. 2015. Dynamics and stabili-
zation of the human gut microbiome during the first year of life. Cell Host
Microbe 17:852. https://doi.org/10.1016/j.chom.2015.05.012.

Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, D Lieber A,
Wu F, Perez-Perez GI, Chen Y, Schweizer W, Zheng X, Contreras M,
Dominguez-Bello MG, Blaser MJ. 2016. Antibiotics, birth mode, and diet
shape microbiome maturation during early life. Sci Transl Med 8:343ra82.
https://doi.org/10.1126/scitranslmed.aad7121.

Yatsunenko T, Rey FE, Manary MJ, Trehan |, Dominguez-Bello MG,
Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC,
Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C,
Clemente JC, Knights D, Knight R, Gordon JI. 2012. Human gut micro-
biome viewed across age and geography. Nature 486:222-227. https://
doi.org/10.1038/nature11053.

Potiron L, Lacroix-Lamandé S, Marquis M, Levern Y, Fort G, Franceschini |,
Laurent F. 2019. Batf3-dependent intestinal dendritic cells play a critical
role in the control of Cryptosporidium parvum infection. J Infect Dis
219:925-935. https://doi.org/10.1093/infdis/jiy528.

Lantier L, Lacroix-Lamandé S, Potiron L, Metton C, Drouet F, Guesdon W,
Gnahoui-David A, Le Vern Y, Deriaud E, Fenis A, Rabot S, Descamps A,
Werts C, Laurent F. 2013. Intestinal CD103+ dendritic cells are key players
in the innate immune control of Cryptosporidium parvum infection in
neonatal mice. PLoS Pathog 9:1003801. https://doi.org/10.1371/journal
.ppat.1003801.

Lantier L, Drouet F, Guesdon W, Mancassola R, Metton C, Lo-Man R, Werts
C, Laurent F, Lacroix-Lamandé S. 2014. Poly(l:C)-induced protection of
neonatal mice against intestinal Cryptosporidium parvum infection
requires an additional TLR5 signal provided by the gut flora. J Infect Dis
209:457-467. https://doi.org/10.1093/infdis/jit432.

Heine J, Pohlenz JF, Moon HW, Woode GN. 1984. Enteric lesions and diar-
rhea in gnotobiotic calves monoinfected with Cryptosporidium species. J
Infect Dis 150:768-775. https://doi.org/10.1093/infdis/150.5.768.

Riggs MW, McGuire TC, Mason PH, Perryman LE. 1989. Neutralization-sen-
sitive epitopes are exposed on the surface of infectious Cryptosporidium
parvum sporozoites. J Immunol 143:1340-1345.

Arrowood MJ, Sterling CR. 1987. Isolation of Cryptosporidium oocysts
and sporozoites using discontinuous sucrose and isopycnic Percoll gra-
dients. J Parasitol 73:314-319. https://doi.org/10.2307/3282084.

Burnet JB, Ogorzaly L, Tissier A, Penny C, Cauchie HM. 2013. Novel quanti-
tative TagMan real-time PCR assays for detection of Cryptosporidium at

mbio.asm.org 15

Downloaded from https://journal s.asm.org/journal/mbio on 24 September 2021 by 75.132.44.168.


https://doi.org/10.1038/nature02977
https://doi.org/10.1038/nature02977
https://doi.org/10.1016/j.exppara.2008.12.014
https://doi.org/10.1016/j.exppara.2008.12.014
https://doi.org/10.1038/s41591-019-0640-y
https://doi.org/10.1126/sciimmunol.aao1314
https://doi.org/10.1126/sciimmunol.aao1314
https://doi.org/10.1126/science.aag2029
https://doi.org/10.1038/srep00233
https://doi.org/10.1016/j.chom.2019.05.007
https://doi.org/10.1016/j.chom.2019.05.007
https://doi.org/10.1016/j.cell.2016.05.018
https://doi.org/10.1016/j.cell.2016.05.018
https://doi.org/10.1126/science.aam5336
https://doi.org/10.3390/ijms17122128
https://doi.org/10.3390/ijms17122128
https://doi.org/10.3945/jn.113.178772
https://doi.org/10.1017/jns.2015.13
https://doi.org/10.1017/jns.2015.13
https://doi.org/10.1146/annurev.nutr.17.1.159
https://doi.org/10.1146/annurev.nutr.17.1.159
https://doi.org/10.1021/acs.jproteome.8b00946
https://doi.org/10.1021/acs.jproteome.8b00946
https://doi.org/10.1194/jlr.R500013-JLR200
https://doi.org/10.1194/jlr.R500013-JLR200
https://doi.org/10.1111/jeu.12272
https://doi.org/10.1111/jeu.12272
https://doi.org/10.1186/1471-2091-11-46
https://doi.org/10.1128/EC.00210-07
https://doi.org/10.1128/EC.00210-07
https://doi.org/10.1016/j.molbiopara.2003.11.011
https://doi.org/10.1016/j.archoralbio.2011.01.011
https://doi.org/10.1016/j.archoralbio.2011.01.011
https://doi.org/10.1007/BF02931506
https://doi.org/10.1007/BF02931506
https://doi.org/10.1089/jmf.2017.3971
https://doi.org/10.1128/IAI.72.12.6806-6816.2004
https://doi.org/10.1128/IAI.72.12.6806-6816.2004
https://doi.org/10.1128/iai.68.4.2315-2322.2000
https://doi.org/10.1128/IAI.73.9.5379-5387.2005
https://doi.org/10.1128/IAI.73.9.5379-5387.2005
https://doi.org/10.1016/0304-4157(84)90005-4
https://doi.org/10.1016/0304-4157(84)90005-4
https://doi.org/10.1016/j.plipres.2007.12.004
https://doi.org/10.1016/j.chom.2015.05.012
https://doi.org/10.1126/scitranslmed.aad7121
https://doi.org/10.1038/nature11053
https://doi.org/10.1038/nature11053
https://doi.org/10.1093/infdis/jiy528
https://doi.org/10.1371/journal.ppat.1003801
https://doi.org/10.1371/journal.ppat.1003801
https://doi.org/10.1093/infdis/jit432
https://doi.org/10.1093/infdis/150.5.768
https://doi.org/10.2307/3282084
https://mbio.asm.org

VanDussen et al.

the genus level and genotyping of major human and cattle-infecting
species. J Appl Microbiol 114:1211-1222. https://doi.org/10.1111/jam
.12103.

58. Liu TC, Kern JT, VanDussen KL, Xiong S, Kaiko GE, Wilen CB, Rajala MW,
Caruso R, Holtzman MJ, Gao F, McGovern DP, Nunez G, Head RD,
Stappenbeck TS. 2018. Interaction between smoking and ATG16L1T300A
triggers Paneth cell defects in Crohn’s disease. J Clin Invest 128:5110-5122.
https://doi.org/10.1172/JCI120453.

59. Schriefer AE, Cliften PF, Hibberd MC, Sawyer C, Brown-Kennerly V, Burcea
L, Klotz E, Crosby SD, Gordon JI, Head RD. 2018. A multi-amplicon 16S
rRNA sequencing and analysis method for improved taxonomic profiling
of bacterial communities. J Microbiol Methods 154:6-13. https://doi.org/
10.1016/j.mimet.2018.09.019.

60. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello
EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST,
Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD,
Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J,
Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-
throughput community sequencing data. Nat Methods 7:335-336. https://
doi.org/10.1038/nmeth.f.303.

61. Segata N, lzard J, Waldron L, Gevers D, Miropolsky L, Garrett WS,

November/December 2020 Volume 11 Issue 6 e02582-20

62.

63.

64.

65.

66.

mBio’

Huttenhower C. 2011. Metagenomic biomarker discovery and explana-
tion. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60.

Xia J, Sinelnikov IV, Han B, Wishart DS. 2015. MetaboAnalyst 3.0—making
metabolomics more meaningful. Nucleic Acids Res 43:W251-W257.
https://doi.org/10.1093/nar/gkv380.

Zhang X, Kim CY, Worthen T, Witola WH. 2018. Morpholino-mediated in
vivo silencing of Cryptosporidium parvum lactate dehydrogenase
decreases oocyst shedding and infectivity. Int J Parasitol 48:649-656.
https://doi.org/10.1016/j.ijpara.2018.01.005.

Wilke G, Wang Y, Ravindran S, Stappenbeck T, Witola WH, Sibley LD. 2020.
In vitro culture of Cryptosporidium parvum using stem cell-derived intesti-
nal epithelial monolayers, p 351-372. In Mead J, Arrowood M (ed),
Cryptosporidium methods in molecular biology, vol 2052. Humana, New
York, NY.

Moon C, VanDussen KL, Miyoshi H, Stappenbeck TS. 2014. Development
of a primary mouse intestinal epithelial cell monolayer culture system to
evaluate factors that modulate IgA transcytosis. Mucosal Immunol
7:818-828. https://doi.org/10.1038/mi.2013.98.

Miyoshi H, Ajima R, Luo C, Yamaguchi TP, Stappenbeck TS. 2012. Wnt5a
potentiates TGF-beta signaling to promote colonic crypt regeneration af-
ter tissue injury. Science 338:108-113. https://doi.org/10.1126/science
.1223821.

mbio.asm.org 16

Downloaded from https://journal s.asm.org/journal/mbio on 24 September 2021 by 75.132.44.168.


https://doi.org/10.1111/jam.12103
https://doi.org/10.1111/jam.12103
https://doi.org/10.1172/JCI120453
https://doi.org/10.1016/j.mimet.2018.09.019
https://doi.org/10.1016/j.mimet.2018.09.019
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1093/nar/gkv380
https://doi.org/10.1016/j.ijpara.2018.01.005
https://doi.org/10.1038/mi.2013.98
https://doi.org/10.1126/science.1223821
https://doi.org/10.1126/science.1223821
https://mbio.asm.org

	Neonatal mouse gut metabolites influence Cryptosporidium parvum infection in intestinal epithelial cells
	Authors

	RESULTS
	Age-dependent susceptibility to C. parvum in a neonatal mouse model of cryptosporidiosis.
	Changes in luminal metabolite composition over the first 6 weeks of life.
	Screening for effects of neonatal metabolites on C. parvum growth in vitro.
	Effects of omega-3 and omega-6 polyunsaturated fatty acids on C. parvum growth and invasion.

	DISCUSSION
	MATERIALS AND METHODS
	Neonatal mouse model of C. parvum infection.
	Sample collection for 16S sequencing and metabolomics.
	16S sequencing and analysis.
	Metabolite profiling and analysis.
	HCT-8 cell culture and infection.
	C. parvum growth assay for initial metabolite screen.
	C. parvum invasion assay.
	C. parvum invasion wash-out assay.
	Quantification of C. parvum in metabolite-treated air-liquid interface transwells.
	Data availability.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

