159 research outputs found

    The November 1987 eclipse of the zeta-Aur system HR 2554

    Get PDF
    It is confirmed that HR 2554 (G6 II + A0 V) is an atmospheric eclipsing system of the zeta-Aur type. The IUE observations of the Nov. 1987 eclipse indicate that the eclipse of the A star lasts 4 days and is not total. Absorption lines due to the extended atmosphere of the primary can be seen a day before and after the eclipse and are missing 2 days from first and 4th contact. Thus the outer envelope of the primary extends to less than 1 stellar radius beyond the photosphere. Compared to 22 Vul (G3 Ib-II + B9 V), where the absorption can be traced to a few stellar radii, HR 2554 is a more moderate case of mass outflow, which implies there is reduced interaction of the secondary within the wind from the primary as is seen in the other zeta-Aur systems

    Collaborative observations of HDE 332077

    Get PDF
    IUE low dispersion observations were made of the T(sub c)-deficient peculiar red giant (PRG) star, HDE 332077, to test the hypothesis that T(sub c)-poor PRG's are formed as a result of mass transfer from a binary companion rather than from internal thermal pulsing while on the asymptotic red giant branch. Previous ground-based observations of this star indicated that it is a binary, but the secondary star was too massive for an expected white dwarf. A deep, short wavelength prime (SWP) exposure was needed to search for evidence of an A-type main-sequence companion. We obtained a 120 minute LWP exposure (LWP 23479), followed by a collaborative 1230 minute SWP exposure (SWP 45113). These observations were combined with our earlier IUE and optical data on this PRG star to model the spectral energy distribution of the system

    Companions to peculiar red giants: HR 363 and HR 1105

    Get PDF
    Recent IUE observations of two Tc-deficient S-type peculiar red giants that are also spectroscopic binaries, HR 363 and HR 1105 are reported. A 675 min SWP exposure of HR 363 shows emission lines of O I 1304 and Si II 1812 and a trace of continuum. Compared to the M giants, the far UV flux may be relatively larger, indicating a possible contribution from a white dwarf companion, but no high temperature emission lines are seen to indicate that this is an interacting system where mass-transfer recently occurred. However, HR 1105 appears to have a highly variable UV companion. In 1982, no UV flux was discerned for this system, but by 1986 C IV was strong, increasing by a factor of 3 in 1987 with prominent lines of Si III, C III, O III, Si IV, and N V. Using orbital parameters, these observations are consistent with high activity occuring when the side of the S-star primary illuminated by the companion faces the Earth, but since the IUE data were taken over 3 orbits, a secular change in the UV component cannot be excluded

    The unusual interacting S star binary HR 1105

    Get PDF
    IUE observations of HR 1105 over its 596-day orbit show strong orbital modulation of both continuum and emission lines. These are most intense just before both conjunctions and nearly disappear near quadratures, the most intense phase being just before the hot component passes in front of the S star. High dispersion observations exhibit a blue-shifted absorption feature in Mg II, representing an outflow of material of about 55 km/s. These observations are consistent with the UV source being an optically thin gas stream between the components of the system, which is partially eclipsed when the S star is in front

    The Unusual S Star Binary HD 191589

    Get PDF
    Recently, we discovered with International Ultraviolet Explorer (IUE) an F0-F2 IV-V companion to the T(sub c)-deficient S star HD 191589. If the magnitude difference is (delta)V=3.7, as indicated by several arguments, and E(B-V) = 0.0, we obtain a value of M(sub v)= - 1.5 +/- 0.4 for the Peculiar Red Giant (PRG), too faint for it to be a thermally-pulsing asymptotic giant branch star. According to the binary mass-transfer hypothesis for T(sub c)-deficient PRG's, a white dwarf must be the source of the s-process enhancement of the current primary star, but it cannot be seen because of the presence of the secondary. If such is the case, the F-star companion may also have been contaminated by s-process material. High-dispersion IUE observations indicate an enhancement of Zr II in the photosphere of the F-star as well. Thus, HD 191589 is likely a triple system, where what was once the most massive component of the system has polluted both of its companions with s-process material. One of these is the current S star, while the other is the companion still near the main sequence

    A Far Ultraviolet Spectroscopic Explorer Survey of Coronal Forbidden Lines in Late-Type Stars

    Get PDF
    We present a survey of coronal forbidden lines detected in Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of nearby stars. Two strong coronal features, Fe XVIII 974 A and Fe XIX 1118 A, are observed in 10 of the 26 stars in our sample. Various other coronal forbidden lines, observed in solar flares, also were sought but not detected. The Fe XVIII feature, formed at log T (K) = 6.8, appears to be free of blends, whereas the Fe XIX line can be corrupted by a C I multiplet. FUSE observations of these forbidden iron lines at spectral resolution R ~ 15,000 provides the opportunity to study dynamics of hot coronal plasmas. We find that the velocity centroid of the Fe XVIII feature deviates little from the stellar rest frame, confirming that the hot coronal plasma is confined. The observed line widths generally are consistent with thermal broadening at the high temperatures of formation and show little indication of additional turbulent broadening. The fastest rotating stars, 31 Com, alpha Aur Ab, and AB Dor, show evidence for excess broadening beyond the thermal component and the photospheric v sin i. The anomalously large widths in these fast rotating targets may be evidence for enhanced rotational broadening consistent with emission from coronal regions extending an additional delta R ~ 0.4-1.3 R_star above the stellar photosphere or represent the turbulent broadening caused by flows along magnetic loop structures. For the stars in which Fe XVIII is detected, there is an excellent correlation between the observed Rontgensatellit} (ROSAT) 0.2-2.0 keV soft X-ray flux and the coronal forbidden line flux. As a result, Fe XVIII is a powerful new diagnostic of coronal thermal conditions and dynamics that can be utilized to study high temperature plasma processes in late-type stars.Comment: 29 pages, 7 figures, AASTEX v5.0, accepted by Ap

    International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    Get PDF
    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies

    Covariation in population trends and demography reveals targets for conservation action

    Get PDF
    Wildlife conservation policies directed at common and widespread, but declining, species are difficult to design and implement effectively, as multiple environmental changes are likely to contribute to population declines. Conservation actions ultimately aim to influence demographic rates, but targeting actions towards feasible improvements in these is challenging in widespread species with ranges that encompass a wide range of environmental conditions. Across Europe, sharp declines in the abundance of migratory landbirds have driven international calls for action, but actions that could feasibly contribute to population recovery have yet to be identified. Targeted actions to improve conditions on poor-quality sites could be an effective approach, but only if local conditions consistently influence local demography and hence population trends. Using long-term measures of abundance and demography of breeding birds at survey sites across Europe, we show that co-occurring species with differing migration behaviours have similar directions of local population trends and magnitudes of productivity, but not survival rates. Targeted actions to boost local productivity within Europe, alongside large-scale (non-targeted) environmental protection across non-breeding ranges, could therefore help address the urgent need to halt migrant landbird declines. Such demographic routes to recovery are likely to be increasingly needed to address global wildlife declines.Peer reviewe

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management
    • …
    corecore