3,937 research outputs found
GATA3-driven Th2 responses inhibit TGF-beta1-induced FOXP3 expression and the formation of regulatory T cells.
Transcription factors act in concert to induce lineage commitment towards Th1, Th2, or T regulatory (Treg) cells, and their counter-regulatory mechanisms were shown to be critical for polarization between Th1 and Th2 phenotypes. FOXP3 is an essential transcription factor for natural, thymus-derived (nTreg) and inducible Treg (iTreg) commitment; however, the mechanisms regulating its expression are as yet unknown. We describe a mechanism controlling iTreg polarization, which is overruled by the Th2 differentiation pathway. We demonstrated that interleukin 4 (IL-4) present at the time of T cell priming inhibits FOXP3. This inhibitory mechanism was also confirmed in Th2 cells and in T cells of transgenic mice overexpressing GATA-3 in T cells, which are shown to be deficient in transforming growth factor (TGF)-beta-mediated FOXP3 induction. This inhibition is mediated by direct binding of GATA3 to the FOXP3 promoter, which represses its transactivation process. Therefore, this study provides a new understanding of tolerance development, controlled by a type 2 immune response. IL-4 treatment in mice reduces iTreg cell frequency, highlighting that therapeutic approaches that target IL-4 or GATA3 might provide new preventive strategies facilitating tolerance induction particularly in Th2-mediated diseases, such as allergy
Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an Interasma (Global Asthma Association - GAA) and World Allergy Organization (WAO) document endorsed by Allergic Rhinitis and its Impact on Asthma (ARIA) and Global Allergy and Asthma European Network (GA2LEN)
Evidence that enables us to identify, assess, and access the small airways in asthma and chronic obstructive pulmonary disease (COPD) has led INTERASMA (Global Asthma Association) and WAO to take a position on the role of the small airways in these diseases. Starting from an extensive literature review, both organizations developed, discussed, and approved the manifesto, which was subsequently approved and endorsed by the chairs of ARIA and GA2LEN. The manifesto describes the evidence gathered to date and defines and proposes issues on small airway involvement and management in asthma and COPD with the aim of challenging assumptions, fostering commitment, and bringing about change. The small airways (defined as those with an internal diameter <2 mm) are involved in the pathogenesis of asthma and COPD and are the major determinant of airflow obstruction in these diseases. Various tests are available for the assessment of the small airways, and their results must be integrated to confirm a diagnosis of small airway dysfunction. In asthma and COPD, the small airways play a key role in attempts to achieve disease control and better outcomes. Small-particle inhaled formulations (defined as those that, owing to their size [usually <2 μm], ensure more extensive deposition in the lung periphery than large molecules) have proved beneficial in patients with asthma and COPD, especially those in whom small airway involvement is predominant. Functional and biological tools capable of accurately assessing the lung periphery and more intensive use of currently available tools are necessary. In patients with suspected COPD or asthma, small airway involvement must be assessed using currently available tools. In patients with subotpimal disease control and/or functional or biological signs of disease activity, the role of small airway involvement should be assessed and treatment tailored. Therefore, the choice between large- and small-particle inhaled formulations must reflect the physician’s considerations of disease features, phenotype, and response to previous therapy
Effective antigen presentation to helper T cells by human eosinophils
Although eosinophils are inflammatory cells, there is increasing attention on their immunomodulatory roles. For example, murine eosinophils can present antigen to CD4+ T helper (Th) cells, but it remains unclear whether human eosinophils also have this ability. This study determined whether human eosinophils present a range of antigens, including allergens, to activate Th cells, and characterized their expression of MHC class II and co-stimulatory molecules required for effective presentation. Human peripheral blood eosinophils purified from non-allergic donors were pulsed with the antigens house dust mite extract (HDM), Timothy Grass extract (TG) or Mycobacterium tuberculosis purified protein derivative (PPD), before co-culture with autologous CD4+ Th cells. Proliferative and cytokine responses were measured, with eosinophil expression of HLA-DR/DP/DQ and the co-stimulatory molecules CD40, CD80 and CD86 determined by flow cytometry. Eosinophils pulsed with HDM, TG or PPD drove Th cell proliferation, with the response strength dependent on antigen concentration. The cytokine responses varied with donor and antigen, and were not biased towards any particular Th subset, often including combinations of pro- and anti-inflammatory cytokines. Eosinophils up-regulated surface expression of HLA-DR/DP/DQ, CD80, CD86 and CD40 in culture, increases that were sustained over 5 days when incubated with antigens, including HDM, or the major allergens it contains, Der p I or Der p II. Human eosinophils can, therefore, act as effective antigen-presenting cells to stimulate varied Th cell responses against a panel of antigens including HDM, TG or PPD, an ability that may help to determine the development of allergic disease
The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses
The immune-modulating properties of certain bifidobacterial strains, such as Bifidobacterium longum subsp. longum 35624 (B. longum 35624), have been well described, although the strain-specific molecular characteristics associated with such immune-regulatory activity are not well defined. It has previously been demonstrated that B. longum 35624 produces a cell surface exopolysaccharide (sEPS), and in this study, we investigated the role played by this exopolysaccharide in influencing the host immune response. B. longum 35624 induced relatively low levels of cytokine secretion from human dendritic cells, whereas an isogenic exopolysaccharide-negative mutant derivative (termed sEPSneg) induced vastly more cytokines, including interleukin-17 (IL-17), and this response was reversed when exopolysaccharide production was restored in sEPSneg by genetic complementation. Administration of B. longum 35624 to mice of the T cell transfer colitis model prevented disease symptoms, whereas sEPSneg did not protect against the development of colitis, with associated enhanced recruitment of IL-17+ lymphocytes to the gut. Moreover, intranasal administration of sEPSneg also resulted in enhanced recruitment of IL-17+ lymphocytes to the murine lung. These data demonstrate that the particular exopolysaccharide produced by B. longum 35624 plays an essential role in dampening proinflammatory host responses to the strain and that loss of exopolysaccharide production results in the induction of local TH17 responses. IMPORTANCE: Particular gut commensals, such as B. longum 35624, are known to contribute positively to the development of mucosal immune cells, resulting in protection from inflammatory diseases. However, the molecular basis and mechanisms for these commensal-host interactions are poorly described. In this report, an exopolysaccharide was shown to be decisive in influencing the immune response to the bacterium. We generated an isogenic mutant unable to produce exopolysaccharide and observed that this mutation caused a dramatic change in the response of human immune cells in vitro. In addition, the use of mouse models confirmed that lack of exopolysaccharide production induces inflammatory responses to the bacterium. These results implicate the surface-associated exopolysaccharide of the B. longum 35624 cell envelope in the prevention of aberrant inflammatory responses
In vivo switch to IL-10–secreting T regulatory cells in high dose allergen exposure
High dose bee venom exposure in beekeepers by natural bee stings represents a model to understand mechanisms of T cell tolerance to allergens in healthy individuals. Continuous exposure of nonallergic beekeepers to high doses of bee venom antigens induces diminished T cell–related cutaneous late-phase swelling to bee stings in parallel with suppressed allergen-specific T cell proliferation and T helper type 1 (Th1) and Th2 cytokine secretion. After multiple bee stings, venom antigen–specific Th1 and Th2 cells show a switch toward interleukin (IL) 10–secreting type 1 T regulatory (Tr1) cells. T cell regulation continues as long as antigen exposure persists and returns to initial levels within 2 to 3 mo after bee stings. Histamine receptor 2 up-regulated on specific Th2 cells displays a dual effect by directly suppressing allergen-stimulated T cells and increasing IL-10 production. In addition, cytotoxic T lymphocyte–associated antigen 4 and programmed death 1 play roles in allergen-specific T cell suppression. In contrast to its role in mucosal allergen tolerance, transforming growth factor β does not seem to be an essential player in skin-related allergen tolerance. Thus, rapid switch and expansion of IL-10–producing Tr1 cells and the use of multiple suppressive factors represent essential mechanisms in immune tolerance to a high dose of allergens in nonallergic individuals
- …
