94 research outputs found

    Molecular mechanism of mucociliary transport : relevance to cystic fibrosis

    Get PDF

    RAB-Like 2 Has an Essential Role in Male Fertility, Sperm Intra-Flagellar Transport, and Tail Assembly

    No full text
    A significant percentage of young men are infertile and, for the majority, the underlying cause remains unknown. Male infertility is, however, frequently associated with defective sperm motility, wherein the sperm tail is a modified flagella/cilia. Conversely, a greater understanding of essential mechanisms involved in tail formation may offer contraceptive opportunities, or more broadly, therapeutic strategies for global cilia defects. Here we have identified Rab-like 2 (RABL2) as an essential requirement for sperm tail assembly and function. RABL2 is a member of a poorly characterized clade of the RAS GTPase superfamily. RABL2 is highly enriched within developing male germ cells, where it localizes to the mid-piece of the sperm tail. Lesser amounts of Rabl2 mRNA were observed in other tissues containing motile cilia. Using a co-immunoprecipitation approach and RABL2 affinity columns followed by immunochemistry, we demonstrated that within developing haploid germ cells RABL2 interacts with intra-flagella transport (IFT) proteins and delivers a specific set of effector (cargo) proteins, including key members of the glycolytic pathway, to the sperm tail. RABL2 binding to effector proteins is regulated by GTP. Perturbed RABL2 function, as exemplified by the Mot mouse line that contains a mutation in a critical protein-protein interaction domain, results in male sterility characterized by reduced sperm output, and sperm with aberrant motility and short tails. Our data demonstrate a novel function for the RABL protein family, an essential role for RABL2 in male fertility and a previously uncharacterised mechanism for protein delivery to the flagellum.This work was supported by grants from the NHMRC to MKO (#606445) and CJO, the Australian Research Council (MKO, RJA, and CJO), the New South Wales Cancer Council (CJO), Cancer Institute New South Wales (CJO), Banque Nationale de Paris-Paribas Australia and New Zealand (CJO), RT Hall Trust (CJO), and the National Breast Cancer Foundation (CJO). JCYL is the recipient of a NHMRC PhD scholarship. MKO and CJO are the recipients of NHMRC Senior Research Fellowships (#545805 and #481310). CCG is the recipient an NHMRC Australia Fellowship. JCW is the recipient of an Australian Research Council Federation Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Current global status of male reproductive health

    Get PDF
    BACKGROUND: The widespread interest in male reproductive health (MRH), fueled by emerging evidence, such as the global decline in sperm counts, has intensified concerns about the status of MRH. Consequently, there is a pressing requirement for a strategic, systematic approach to identifying critical questions, collecting pertinent information, and utilizing these data to develop evidence-based strategies. The methods for addressing these questions and the pathways toward their answers will inevitably vary based on the variations in cultural, geopolitical, and health-related contexts. To address these issues, a conjoint ESHRE and Male Reproductive Health Initiative (MRHI) Campus workshop was convened.OBJECTIVE AND RATIONALE: The three objectives were: first, to assess the current state of MRH around the world; second, to identify some of the key gaps in knowledge; and, third, to examine how MRH stakeholders can collaboratively generate intelligent and effective paths forward.SEARCH METHODS: Each expert reviewed and summarized the current literature that was subsequently used to provide a comprehensive overview of challenges related to MRH.OUTCOMES: This narrative report is an overview of the data, opinions, and arguments presented during the workshop. A number of outcomes are presented and can be summarized by the following overarching themes: MRH is a serious global issue and there is a plethora of gaps in our understanding; there is a need for widespread international collaborative networks to undertake multidisciplinary research into fundamental issues, such as lifestyle/environmental exposure studies, and high-quality clinical trials; and there is an urgent requirement for effective strategies to educate young people and the general public to safeguard and improve MRH across diverse population demographics and resources.LIMITATIONS REASONS FOR CAUTION: This was a workshop where worldwide leading experts from a wide range of disciplines presented and discussed the evidence regarding challenges related to MRH. While each expert summarized the current literature and placed it in context, the data in a number of areas are limited and/or sparse. Equally, important areas for consideration may have been missed. Moreover, there are clear gaps in our knowledge base, which makes some conclusions necessarily speculative and warranting of further study.WIDER IMPLICATIONS: Poor MRH is a global issue that suffers from low awareness among the public, patients, and heathcare professionals. Addressing this will require a coordinated multidisciplinary approach. Addressing the significant number of knowledge gaps will require policy makers prioritizing MRH and its funding.STUDY FUNDING/COMPETING INTERESTS: The authors would like to extend their gratitude to ESHRE for providing financial support for the Budapest Campus Workshop, as well as to Microptic S.L. (Barcelona) for kindly sponsoring the workshop. P.B. is the Director of the not-for-profit organization Global Action on Men's Health and receives fees and expenses for his work, (which includes the preparation of this manuscript). Conflicts of interest: C.J.D.J., C.L.R.B., R.A.A., P.B., M.P.C., M.L.E., N.G., N.J., C.K., AAP, M.K.O., S.R.-H., M.H.V.-L.: ESHRE Campus Workshop 2022 (Travel support-personal). C.J.D.J.: Cambridge University Press (book royalties-personal). ESHRE Annual Meeting 2022 and Yale University Panel Meeting 2023 (Travel support-personal). C.L.R.B.: Ferring and IBSA (Lecture), RBMO editor (Honorarium to support travel, etc.), ExSeed and ExScentia (University of Dundee), Bill &amp; Melinda Gates Foundation (for research on contraception). M.P.C.: Previously received funding from pharmaceutical companies for health economic research. The funding was not in relation to this work and had no bearing on the contents of this work. No funding from other sources has been provided in relation to this work (funding was provided to his company Global Market Access Solutions). M.L.E.: Advisor to Ro, Doveras, Next, Hannah, Sandstone. C.K.: European Academy of Andrology (Past president UNPAID), S.K.: CEO of His Turn, a male fertility Diagnostic and Therapeutic company (No payments or profits to date). R.I.M.: www.healthymale.org.au (Australian Government funded not for profit in men's health sector (Employed as Medical Director 0.2 FET), Monash IVF Pty Ltd (Equity holder)). N.J.: Merck (consulting fees), Gedeon Richter (honoraria). S.R.-H.: ESHRE (Travel reimbursements). C.N.: LLC (Nursing educator); COMMIT (Core Outcomes Measures for Infertility Trials) Advisor, meeting attendee, and co-author; COMMA (Core Outcomes in Menopause) Meeting attendee, and co-author; International Federation of Gynecology and Obstetrics (FIGO) Delegate Letters and Sciences; ReproNovo, Advisory board; American Board of Urology Examiner; American Urological Association Journal subsection editor, committee member, guidelines co-author Ferring Scientific trial NexHand Chief Technology Officer, stock ownership Posterity Health Board member, stock ownership. A.P.: Economic and Social Research Council (A collaborator on research grant number ES/W001381/1). Member of an advisory committee for Merck Serono (November 2022), Member of an advisory board for Exceed Health, Speaker fees for educational events organized by Mealis Group; Chairman of the Cryos External Scientific Advisory Committee: All fees associated with this are paid to his former employer The University of Sheffield. Trustee of the Progress Educational Trust (Unpaid). M.K.O.: National Health and Medical Research Council and Australian Research Council (Funding for research of the topic of male fertility), Bill and Melinda Gates Foundation (Funding aimed at the development of male gamete-based contraception), Medical Research Future Fund (Funding aimed at defining the long-term consequences of male infertility). M.H.V.-L.: Department of Sexual and Reproductive Health and Research (SRH)/Human Reproduction Programme (HRP) Research Project Panel RP2/WHO Review Member; MRHI (Core Group Member), COMMIT (member), EGOI (Member); Human Reproduction (Associate Editor), Fertility and Sterility (Editor), AndroLATAM (Founder and Coordinator).</p

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    • …
    corecore