614 research outputs found

    Stochastic blockmodels and community structure in networks

    Full text link
    Stochastic blockmodels have been proposed as a tool for detecting community structure in networks as well as for generating synthetic networks for use as benchmarks. Most blockmodels, however, ignore variation in vertex degree, making them unsuitable for applications to real-world networks, which typically display broad degree distributions that can significantly distort the results. Here we demonstrate how the generalization of blockmodels to incorporate this missing element leads to an improved objective function for community detection in complex networks. We also propose a heuristic algorithm for community detection using this objective function or its non-degree-corrected counterpart and show that the degree-corrected version dramatically outperforms the uncorrected one in both real-world and synthetic networks.Comment: 11 pages, 3 figure

    Joint modelling of multiple network wiews

    Get PDF
    Latent space models (LSM) for network data were introduced by Hoff et al. (2002) under the basic assumption that each node of the network has an unknown position in a D-dimensional Euclidean latent space: generally the smaller the distance between two nodes in the latent space, the greater their probability of being connected. In this paper we propose a variational inference approach to estimate the intractable posterior of the LSM. In many cases, different network views on the same set of nodes are available. It can therefore be useful to build a model able to jointly summarise the information given by all the network views. For this purpose, we introduce the latent space joint model (LSJM) that merges the information given by multiple network views assuming that the probability of a node being connected with other nodes in each network view is explained by a unique latent variable. This model is demonstrated on the analysis of two datasets: an excerpt of 50 girls from 'Teenage Friends and Lifestyle Study' data at three time points and the Saccharomyces cerevisiae genetic and physical protein-protein interactions

    Central Auditory Processing Outcome After Stroke In Children.

    Get PDF
    To investigate central auditory processing in children with unilateral stroke and to verify whether the hemisphere affected by the lesion influenced auditory competence. 23 children (13 male) between 7 and 16 years old were evaluated through speech-in-noise tests (auditory closure); dichotic digit test and staggered spondaic word test (selective attention); pitch pattern and duration pattern sequence tests (temporal processing) and their results were compared with control children. Auditory competence was established according to the performance in auditory analysis ability. Was verified similar performance between groups in auditory closure ability and pronounced deficits in selective attention and temporal processing abilities. Most children with stroke showed an impaired auditory ability in a moderate degree. Children with stroke showed deficits in auditory processing and the degree of impairment was not related to the hemisphere affected by the lesion.72680-

    Zoledronic acid boosts γδ T-cell activity in children receiving αβ+ T and CD19+ cell-depleted grafts from an HLA-haplo-identical donor

    Get PDF
    We demonstrated that γδ T cells of patients given HLA-haploidentical HSCT after removal of αβ+ T cells and CD19+ B cells are endowed with the capacity of killing leukemia cells after ex vivo treatment with zoledronic acid (ZOL). Thus, we tested the hypothesis that infusion of ZOL in patients receiving this type of graft may enhance γδ T-cell cytotoxic activity against leukemia cells. ZOL was infused every 28 d in 43 patients; most were treated at least twice. γδ T cells before and after ZOL treatments were studied in 33 of these 43 patients, till at least 7 mo after HSCT by high-resolution mass spectrometry, flow-cytometry, and degranulation assay. An induction of Vδ2-cell differentiation, paralleled by increased cytotoxicity of both Vδ1 and Vδ2 cells against primary leukemia blasts was associated with ZOL treatment. Cytotoxic activity was further increased in Vδ2 cells, but not in Vδ1 lymphocytes in those patients given more than one treatment. Proteomic analysis of γδ T cells purified from patients showed upregulation of proteins involved in activation processes and immune response, paralleled by downregulation of proteins involved in proliferation. Moreover, a proteomic signature was identified for each ZOL treatment. Patients given three or more ZOL infusions had a better probability of survival in comparison to those given one or two treatments (86% vs. 54%, respectively, p = 0.008). Our data indicate that ZOL infusion in pediatric recipients of αβ T- and B-cell-depleted HLA-haploidentical HSCT promotes γδ T-cell differentiation and cytotoxicity and may influence the outcome of patients

    Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells

    Get PDF
    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in an concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog

    The Molecular Assembly of Amyloid Aβ Controls Its Neurotoxicity and Binding to Cellular Proteins

    Get PDF
    Accumulation of β-sheet-rich peptide (Aβ) is strongly associated with Alzheimer's disease, characterized by reduction in synapse density, structural alterations of dendritic spines, modification of synaptic protein expression, loss of long-term potentiation and neuronal cell death. Aβ species are potent neurotoxins, however the molecular mechanism responsible for Aβ toxicity is still unknown. Numerous mechanisms of toxicity were proposed, although there is no agreement about their relative importance in disease pathogenesis. Here, the toxicity of Aβ 1–40 and Aβ 1–42 monomers, oligomers or fibrils, was evaluated using the N2a cell line. A structure-function relationship between peptide aggregation state and toxic properties was established. Moreover, we demonstrated that Aβ toxic species cross the plasma membrane, accumulate in cells and bind to a variety of internal proteins, especially on the cytoskeleton and in the endoplasmatic reticulum (ER). Based on these data we suggest that numerous proteins act as Aβ receptors in N2a cells, triggering a multi factorial toxicity

    Immune modulation properties of zoledronic acid on TcRγδ T-lymphocytes after TcRαβ/CD19-depleted haploidentical stem cell transplantation: an analysis on 46 pediatric patients affected by acute leukemia

    Get PDF
    TcRαβ/CD19-cell depleted HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) represents a promising new platform for children affected by acute leukemia in need of an allograft and lacking a matched donor, disease recurrence being the main cause of treatment failure. The use of zoledronic acid to enhance TcRγδ+ lymphocyte function after TcRαβ/CD19-cell depleted haplo-HSCT was tested in an open-label, feasibility, proof-of-principle study. Forty-six children affected by high-risk acute leukemia underwent haplo-HSCT after removal of TcRαβ+ and CD19+ B lymphocytes. No post-transplant pharmacological graft-versus-host disease (GvHD) prophylaxis was given. Zoledronic acid was administered monthly at a dose of 0.05 mg/kg/dose (maximum dose 4 mg), starting from day +20 after transplantation. A total of 139 infusions were administered, with a mean of 3 infusions per patient. No severe adverse event was observed. Common side effects were represented by asymptomatic hypocalcemia and acute phase reactions (including fever, chills, malaise, and/or arthralgia) within 24–48 h from zoledronic acid infusion. The cumulative incidence of acute and chronic GvHD was 17.3% (all grade I-II) and 4.8% (all limited), respectively. Patients given 3 or more infusions of zoledronic acid had a lower incidence of both acute GvHD (8.8 vs. 41.6%, p = 0.015) and chronic GvHD (0 vs. 22.2%, p = 0.006). Transplant-related mortality (TRM) and relapse incidence at 3 years were 4.3 and 30.4%, respectively. Patients receiving repeated infusions of zoledronic acid had a lower TRM as compared to those receiving 1 or 2 administration of the drug (0 vs. 16.7%, p = 0.01). Five-year overall survival (OS) and disease-free survival (DFS) for the whole cohort were 67.2 and 65.2%, respectively, with a trend toward a better OS for patients receiving 3 or more infusions (73.1 vs. 50.0%, p = 0.05). The probability of GvHD/relapse-free survival was significantly worse in patients receiving 1–2 infusions of zoledonic acid than in those given ≥3 infusions (33.3 vs. 70.6%, respectively, p = 0.006). Multivariable analysis showed an independent positive effect on outcome given by repeated infusions of zoledronic acid (HR 0.27, p = 0.03). These data indicate that the use of zoledronic acid after TcRαβ/CD19-cell depleted haploHSCT is safe and may result in a lower incidence of acute GvHD, chronic GvHD, and TRM
    corecore