Stochastic blockmodels have been proposed as a tool for detecting community
structure in networks as well as for generating synthetic networks for use as
benchmarks. Most blockmodels, however, ignore variation in vertex degree,
making them unsuitable for applications to real-world networks, which typically
display broad degree distributions that can significantly distort the results.
Here we demonstrate how the generalization of blockmodels to incorporate this
missing element leads to an improved objective function for community detection
in complex networks. We also propose a heuristic algorithm for community
detection using this objective function or its non-degree-corrected counterpart
and show that the degree-corrected version dramatically outperforms the
uncorrected one in both real-world and synthetic networks.Comment: 11 pages, 3 figure