155 research outputs found

    Socioeconomic questionnaire and clinical assessment in the HELENA Cross-sectional Study: methodology

    No full text
    Rationale: Environmental factors such as dietary habits, breastfeeding, socioeconomic conditions and educational factors are strong influences on nutritional and puberty status, physical activity, food choices and their interactions. Several diseases of adulthood seem to be linked to, or to originate from, lifestyle in childhood and adolescence. Objective: The aims of this study are to describe birth parameters and socioeconomic factors and to assess clinical status in adolescents aged 13-16 years from 10 European countries participating in the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) Cross-Sectional Study (CSS). Methodology: A self-report questionnaire on the socioeconomic status, a parental questionnaire concerning neonatal period and also a case report form (CRF), in which clinical items during clinical examination (such as medical history, treatments, anthropometry, Tanner staging, blood pressure, heart rate) were assessed. To develop these documents, first a list of items was established, a search of existing documents was performed and the advice of local and international experts was taken. All documents (questionnaires and an operations manual) were discussed in plenary HELENA meetings; a final version of these documents was fixed, and the process of translation and back translation was performed. Results: The questionnaires and CRF were tested for validation in all 10 participant cities; 208 adolescents were enrolled during the pilot study. All items that caused problems or questions in one or more participating centers or were completed by < 85% of the adolescents were reviewed before the beginning of the HELENA-CSS. Conclusion: These final questionnaires and CRF will contribute to better understanding of the inequalities in nutrition, behavior and health in the European adolescent population. The experience and process should be useful for other multicenter studies

    Activin A Plays a Critical Role in Proliferation and Differentiation of Human Adipose Progenitors

    Get PDF
    International audienceAbstractObjective: Growth of white adipose tissue takes place in normal development and in obesity. A pool of adipose progenitors is responsible for the formation of new adipocytes and for the potential of this tissue to expand in response to chronic energy overload. However, factors controlling self-renewal of human adipose progenitors are largely unknown. We investigated the expression profile and the role of activin A in this process. Research Design and Methods: Expression of INHBA/activin A has been investigated in three types of human adipose progenitors. We then analyzed at the molecular level the function of activin A during human adipogenesis. We finally investigated the status of activin A in adipose tissues of lean and obese subjects and analyzed macrophage-induced regulation of its expression. Results: INHBA/activin A is expressed by adipose progenitors from various fat depots and its expression dramatically decreases as progenitors differentiate into adipocytes. Activin A regulates the number of undifferentiated progenitors. Sustained activation or inhibition of the activin A pathway impairs or promotes respectively adipocyte differentiation via C/EBPbeta-LAP and Smad2 pathway in an autocrine/paracrine manner. Activin A is expressed at higher levels in adipose tissue of obese patients compared to lean subjects. Indeed, activin A levels in adipose progenitors are dramatically increased by factors secreted by macrophages derived from obese adipose tissue. Conclusions: Altogether, our data show that activin A plays a significant role in human adipogenesis. We propose a model in which macrophages which are located in adipose tissue regulate adipose progenitor self-renewal through activin A

    Sucrose Counteracts the Anti-Inflammatory Effect of Fish Oil in Adipose Tissue and Increases Obesity Development in Mice

    Get PDF
    BACKGROUND: Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance. METHODOLOGY/PRINCIPAL FINDINGS: We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∢sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state. CONCLUSIONS/SIGNIFICANCE: The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice

    Activation of Protein Kinase A and Exchange Protein Directly Activated by cAMP Promotes Adipocyte Differentiation of Human Mesenchymal Stem Cells

    Get PDF
    Human mesenchymal stem cells are primary multipotent cells capable of differentiating into several cell types including adipocytes when cultured under defined in vitro conditions. In the present study we investigated the role of cAMP signaling and its downstream effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac) in adipocyte conversion of human mesenchymal stem cells derived from adipose tissue (hMADS). We show that cAMP signaling involving the simultaneous activation of both PKA- and Epac-dependent signaling is critical for this process even in the presence of the strong adipogenic inducers insulin, dexamethasone, and rosiglitazone, thereby clearly distinguishing the hMADS cells from murine preadipocytes cell lines, where rosiglitazone together with dexamethasone and insulin strongly promotes adipocyte differentiation. We further show that prostaglandin I2 (PGI2) may fully substitute for the cAMP-elevating agent isobutylmethylxanthine (IBMX). Moreover, selective activation of Epac-dependent signaling promoted adipocyte differentiation when the Rho-associated kinase (ROCK) was inhibited. Unlike the case for murine preadipocytes cell lines, long-chain fatty acids, like arachidonic acid, did not promote adipocyte differentiation of hMADS cells in the absence of a PPARΞ³ agonist. However, prolonged treatment with the synthetic PPARΞ΄ agonist L165041 promoted adipocyte differentiation of hMADS cells in the presence of IBMX. Taken together our results emphasize the need for cAMP signaling in concert with treatment with a PPARΞ³ or PPARΞ΄ agonist to secure efficient adipocyte differentiation of human hMADS mesenchymal stem cells

    Adipose Tissue Fatty Acid Patterns and Changes in Anthropometry: A Cohort Study

    Get PDF
    INTRODUCTION: Diets rich in n-3 long chain polyunsaturated fatty acids (LC-PUFA), but low in n-6 LC-PUFA and 18:1 trans-fatty acids (TFA), may lower the risk of overweight and obesity. These fatty acids have often been investigated individually. We explored associations between global patterns in adipose tissue fatty acids and changes in anthropometry. METHODS: 34 fatty acid species from adipose tissue biopsies were determined in a random sample of 1100 men and women from a Danish cohort study. We used sex-specific principal component analysis and multiple linear regression to investigate the associations of adipose tissue fatty acid patterns with changes in weight, waist circumference (WC), and WC controlled for changes in body mass index (WC(BMI)), adjusting for confounders. RESULTS: 7 principal components were extracted for each sex, explaining 77.6% and 78.3% of fatty acid variation in men and women, respectively. Fatty acid patterns with high levels of TFA tended to be positively associated with changes in weight and WC for both sexes. Patterns with high levels of n-6 LC-PUFA tended to be negatively associated with changes in weight and WC in men, and positively associated in women. Associations with patterns with high levels of n-3 LC-PUFA were dependent on the context of the rest of the fatty acid pattern. CONCLUSIONS: Adipose tissue fatty acid patterns with high levels of TFA may be linked to weight gain, but patterns with high n-3 LC-PUFA did not appear to be linked to weight loss. Associations depended on characteristics of the rest of the pattern

    The Endocrine Disruptor Mono-(2-Ethylhexyl) Phthalate Affects the Differentiation of Human Liposarcoma Cells (SW 872)

    Get PDF
    Esters of phthalic acid (phthalates) are largely used in industrial plastics, medical devices, and pharmaceutical formulations. They are easily released from plastics into the environment and can be found in measurable levels in human fluids. Phthalates are agonists for peroxisome proliferator-activated receptors (PPARs), through which they regulate translocator protein (TSPO; 18 kDa) transcription in a tissue-specific manner. TSPO is a drug- and cholesterol-binding protein involved in mitochondrial respiration, steroid formation, and cell proliferation. TSPO has been shown to increase during differentiation and decrease during maturation in mouse adipocytes. The purpose of this study was to establish the effect of mono-(2-ethylhexyl) phthalate (MEHP) on the differentiation of human SW 872 preadipocyte cells, and examine the role of TSPO in the process. After 4 days of treatment with 10 Β΅M MEHP, we observed changes in the transcription of acetyl-CoA carboxylase alpha, adenosine triphosphate citrate lyase, glucose transporters 1 and 4, and the S100 calcium binding protein B, all of which are markers of preadipocyte differentiation. These observed gene expression changes coincided with a decrease in cellular proliferation without affecting cellular triglyceride content. Taken together, these data suggest that MEHP exerts a differentiating effect on human preadipocytes. Interestingly, MEHP was able to temporarily increase TSPO mRNA levels through the PPAR-Ξ± and Ξ²/Ξ΄ pathways. These results suggest that TSPO can be considered an important player in the differentiation process itself, or alternatively a factor whose presence is essential for adipocyte development

    Bovine gene polymorphisms related to fat deposition and meat tenderness

    Get PDF
    Leptin, thyroglobulin and diacylglycerol O-acyltransferase play important roles in fat metabolism. Fat deposition has an influence on meat quality and consumers' choice. The aim of this study was to determine allele and genotype frequencies of polymorphisms of the bovine genes, which encode leptin (LEP), thyroglobulin (TG) and diacylglycerol O-acyltransferase (DGAT1). A further objective was to establish the effects of these polymorphisms on meat characteristics. We genotyped 147 animals belonging to the Nelore (Bos indicus), Canchim (5/8 Bos taurus + 3/8 Bos indicus), Rubia Gallega X Nelore (1/2 Bos taurus + 1/2 Bos indicus), Brangus Three-way cross (9/16 Bos taurus + 7/16 Bos indicus) and Braunvieh Three-way cross (3/4 Bos taurus + 1/4 Bos indicus) breeds. Backfat thickness, total lipids, marbling score, ribeye area and shear force were fitted, using the General Linear Model (GLM) procedure of the SAS software. The least square means of genotypes and genetic groups were compared using Tukey's test. Allele frequencies vary among the genetic groups, depending on Bos indicus versus Bos taurus influence. The LEP polymorphism segregates in pure Bos indicus Nelore animals, which is a new finding. The T allele of TG is fixed in Nelore, and DGAT1 segregates in all groups, but the frequency of allele A is lower in Nelore animals. The results showed no association between the genotypes and traits studied, but a genetic group effect on these traits was found. So, the genetic background remains relevant for fat deposition and meat tenderness, but the gene markers developed for Bos taurus may be insufficient for Bos indicus

    Interleukin-7 Regulates Adipose Tissue Mass and Insulin Sensitivity in High-Fat Diet-Fed Mice through Lymphocyte-Dependent and Independent Mechanisms

    Get PDF
    Although interleukin (IL)-7 is mostly known as a key regulator of lymphocyte homeostasis, we recently demonstrated that it also contributes to body weight regulation through a hypothalamic control. Previous studies have shown that IL-7 is produced by the human obese white adipose tissue (WAT) yet its potential role on WAT development and function in obesity remains unknown. Here, we first show that transgenic mice overexpressing IL-7 have reduced adipose tissue mass associated with glucose and insulin resistance. Moreover, in the high-fat diet (HFD)-induced obesity model, a single administration of IL-7 to C57BL/6 mice is sufficient to prevent HFD-induced WAT mass increase and glucose intolerance. This metabolic protective effect is accompanied by a significant decreased inflammation in WAT. In lymphocyte-deficient HFD-fed SCID mice, IL-7 injection still protects from WAT mass gain. However, IL-7-triggered resistance against WAT inflammation and glucose intolerance is lost in SCID mice. These results suggest that IL-7 regulates adipose tissue mass through a lymphocyte-independent mechanism while its protective role on glucose homeostasis would be relayed by immune cells that participate to WAT inflammation. Our observations establish a key role for IL-7 in the complex mechanisms by which immune mediators modulate metabolic functions

    Overexpression of Akt1 Enhances Adipogenesis and Leads to Lipoma Formation in Zebrafish

    Get PDF
    <div><h3>Background</h3><p>Obesity is a complex, multifactorial disorder influenced by the interaction of genetic, epigenetic, and environmental factors. Obesity increases the risk of contracting many chronic diseases or metabolic syndrome. Researchers have established several mammalian models of obesity to study its underlying mechanism. However, a lower vertebrate model for conveniently performing drug screening against obesity remains elusive. The specific aim of this study was to create a zebrafish obesity model by over expressing the insulin signaling hub of the <em>Akt1</em> gene.</p> <h3>Methodology/Principal Findings</h3><p><em>Skin oncogenic transformation screening shows that a stable zebrafish transgenic of Tg(krt4Hsa.myrAkt1</em>)<sup>cy18</sup> displays severely obese phenotypes at the adult stage. In Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup>, the expression of exogenous human constitutively active Akt1 (myrAkt1) can activate endogenous downstream targets of mTOR, GSK-3Ξ±/Ξ², and 70S6K. During the embryonic to larval transitory phase, the specific over expression of myrAkt1 in skin can promote hypertrophic and hyperplastic growth. From 21 hour post-fertilization (hpf) onwards, myrAkt1 transgene was ectopically expressed in several mesenchymal derived tissues. This may be the result of the integration position effect. Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup> caused a rapid increase of body weight, hyperplastic growth of adipocytes, abnormal accumulation of fat tissues, and blood glucose intolerance at the adult stage. Real-time RT-PCR analysis showed the majority of key genes on regulating adipogenesis, adipocytokine, and inflammation are highly upregulated in Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup>. In contrast, the myogenesis- and skeletogenesis-related gene transcripts are significantly downregulated in Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup>, suggesting that excess adipocyte differentiation occurs at the expense of other mesenchymal derived tissues.</p> <h3>Conclusion/Significance</h3><p>Collectively, the findings of this study provide direct evidence that Akt1 signaling plays an important role in balancing normal levels of fat tissue in vivo. The obese zebrafish examined in this study could be a new powerful model to screen novel drugs for the treatment of human obesity.</p> </div

    Multiple Organ System Defects and Transcriptional Dysregulation in the Nipbl+/βˆ’ Mouse, a Model of Cornelia de Lange Syndrome

    Get PDF
    Cornelia de Lange Syndrome (CdLS) is a multi-organ system birth defects disorder linked, in at least half of cases, to heterozygous mutations in the NIPBL gene. In animals and fungi, orthologs of NIPBL regulate cohesin, a complex of proteins that is essential for chromosome cohesion and is also implicated in DNA repair and transcriptional regulation. Mice heterozygous for a gene-trap mutation in Nipbl were produced and exhibited defects characteristic of CdLS, including small size, craniofacial anomalies, microbrachycephaly, heart defects, hearing abnormalities, delayed bone maturation, reduced body fat, behavioral disturbances, and high mortality (75–80%) during the first weeks of life. These phenotypes arose despite a decrease in Nipbl transcript levels of only ∼30%, implying extreme sensitivity of development to small changes in Nipbl activity. Gene expression profiling demonstrated that Nipbl deficiency leads to modest but significant transcriptional dysregulation of many genes. Expression changes at the protocadherin beta (Pcdhb) locus, as well as at other loci, support the view that NIPBL influences long-range chromosomal regulatory interactions. In addition, evidence is presented that reduced expression of genes involved in adipogenic differentiation may underlie the low amounts of body fat observed both in Nipbl+/βˆ’ mice and in individuals with CdLS
    • …
    corecore