2,107 research outputs found

    Collagens - structure, function and biosynthesis.

    Get PDF
    The extracellular matrix represents a complex alloy of variable members of diverse protein families defining structural integrity and various physiological functions. The most abundant family is the collagens with more than 20 different collagen types identified so far. Collagens are centrally involved in the formation of fibrillar and microfibrillar networks of the extracellular matrix, basement membranes as well as other structures of the extracellular matrix. This review focuses on the distribution and function of various collagen types in different tissues. It introduces their basic structural subunits and points out major steps in the biosynthesis and supramolecular processing of fibrillar collagens as prototypical members of this protein family. A final outlook indicates the importance of different collagen types not only for the understanding of collagen-related diseases, but also as a basis for the therapeutical use of members of this protein family discussed in other chapters of this issue

    Quasirandomness in hypergraphs

    Get PDF
    An nn-vertex graph GG of edge density pp is considered to be quasirandom if it shares several important properties with the random graph G(n,p)G(n,p). A well-known theorem of Chung, Graham and Wilson states that many such `typical' properties are asymptotically equivalent and, thus, a graph GG possessing one such property automatically satisfies the others. In recent years, work in this area has focused on uncovering more quasirandom graph properties and on extending the known results to other discrete structures. In the context of hypergraphs, however, one may consider several different notions of quasirandomness. A complete description of these notions has been provided recently by Towsner, who proved several central equivalences using an analytic framework. We give short and purely combinatorial proofs of the main equivalences in Towsner's result.Comment: 19 page

    Large-scale albuminuria screen for nephropathy models in chemically induced mouse mutants

    Get PDF
    Background/Aim: Phenotype-driven screening of a great pool of randomly mutant mice and subsequent selection of animals showing symptoms equivalent to human kidney diseases may result in the generation of novel suitable models for the study of the pathomechanisms and the identification of genes involved in kidney dysfunction. Methods: We carried out a large-scale analysis of ethylnitrosourea (ENU)-induced mouse mutants for albuminuria by using qualitative SDS-polyacrylamide gel electrophoresis. Results: The primary albuminuria screen preceded the comprehensive phenotypic mutation analysis in a part of the mice of the Munich ENU project to avoid loss of mutant animals as a consequence of prolonged suffering from severe nephropathy. The primary screen detected six confirmed phenotypic variants in 2,011 G1 animals screened for dominant mutations and no variant in 48 G3 pedigrees screened for recessive mutations. Further breeding experiments resulted in two lines showing a low phenotypic penetrance of albuminuria. The secondary albuminuria screen was carried out in mutant lines which were established in the Munich ENU project without preceding primary albuminuria analysis. Two lines showing increased plasma urea levels were chosen to clarify if severe kidney lesions are involved in the abnormal phenotype. This analysis revealed severe albuminuria in mice which are affected by a recessive mutation leading to increased plasma urea and cholesterol levels. Conclusion: Thus, the phenotypic selection of ENU-induced mutants according to the parameter proteinuria in principle demonstrates the feasibility to identify nephropathy phenotypes in ENU-mutagenized mice. Copyright (C) 2005 S. Karger AG, Basel

    Small rainbow cliques in randomly perturbed dense graphs

    Get PDF
    For two graphs G and H, write G rbw −→ H if G has the property that every proper colouring of its edges yields a rainbow copy of H. We study the thresholds for such so-called anti-Ramsey properties in randomly perturbed dense graphs, which are unions of the form G âˆȘ G(n, p), where G is an n-vertex graph with edge-density at least d > 0, and d is independent of n. In a companion paper, we proved that the threshold for the property G âˆȘ G(n, p) rbw −→ K` is n −1/m2(Kd`/2e) , whenever ` ≄ 9. For smaller `, the thresholds behave more erratically, and for 4 ≀ ` ≀ 7 they deviate downwards significantly from the aforementioned aesthetic form capturing the thresholds for large cliques. In particular, we show that the thresholds for ` ∈ {4, 5, 7} are n −5/4 , n −1 , and n −7/15, respectively. For ` ∈ {6, 8} we determine the threshold up to a (1 + o(1))-factor in the exponent: they are n −(2/3+o(1)) and n −(2/5+o(1)), respectively. For ` = 3, the threshold is n −2 ; this follows from a more general result about odd cycles in our companion paper

    A note on the Cops & Robber game on graphs embedded in non-orientable surfaces

    Get PDF
    The Cops and Robber game is played on undirected finite graphs. A number of cops and one robber are positioned on vertices and take turns in sliding along edges. The cops win if they can catch the robber. The minimum number of cops needed to win on a graph is called its cop number. It is known that the cop number of a graph embedded on a surface XX of genus gg is at most 3g/2+33g/2 + 3, if XX is orientable (Schroeder 2004), and at most 2g+12g+1, otherwise (Nowakowski & Schroeder 1997). We improve the bounds for non-orientable surfaces by reduction to the orientable case using covering spaces. As corollaries, using Schroeder's results, we obtain the following: the maximum cop number of graphs embeddable in the projective plane is 3; the cop number of graphs embeddable in the Klein Bottle is at most 4, and an upper bound is 3g/2+3/23g/2 + 3/2 for all other gg.Comment: 5 pages, 1 figur

    P160 Occurrence and patterns of meniscus damage following ACL transection

    Get PDF

    Disorder Potentials near Lithographically Fabricated Atom Chips

    Full text link
    We show that previously observed large disorder potentials in magnetic microtraps for neutral atoms are reduced by about two orders of magnitude when using atom chips with lithographically fabricated high quality gold layers. Using one dimensional Bose-Einstein condensates, we probe the remaining magnetic field variations at surface distances down to a few microns. Measurements on a 100 um wide wire imply that residual variations of the current flow result from local properties of the wire.Comment: submitted on September 24th, 200

    A modified expression of the major hydrolase activator in Hypocrea jecorina (Trichoderma reesei) changes enzymatic catalysis of biopolymer degradation

    Get PDF
    AbstractHypocrea jecorina (anamorph Trichoderma reesei) is a saprophytic fungus that produces hydrolases, which are applied in different types of industries and used for the production of biofuel. A recombinant Hypocrea strain, which constantly expresses the main transcription activator of hydrolases (Xylanase regulator 1), was found to grow faster on xylan and its monomeric backbone molecule d-xylose. This strain also showed improved ability of clearing xylan medium on plates. Furthermore, this strain has a changed transcription profile concerning genes encoding for hydrolases and enzymes associated with degradation of (hemi)celluloses. We demonstrated that enzymes of this strain from a xylan cultivation favoured break down of hemicelluloses to the monomer d-xylose compared to the parental strain, while the enzymes of the latter one formed more xylobiose. Applying supernatants from cultivation on carboxymethylcellulose in enzymatic conversion of hemicelluloses, the enzymes of the recombinant strain were clearly producing more of both, d-xylose and xylobiose, compared to the parental strain. Altogether, these results point to a changed hydrolase expression profile, an enhanced capability to form the xylan-monomer d-xylose and the assumption that there is a disordered induction pattern if the Xylanase regulator 1 is de-regulated in Hypocrea
    • 

    corecore