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a b s t r a c t

Hypocrea jecorina (anamorph Trichoderma reesei) is a saprophytic fungus that produces hydrolases, which
are applied in different types of industries and used for the production of biofuel. A recombinant Hypocrea
strain, which constantly expresses the main transcription activator of hydrolases (Xylanase regulator 1),
was found to grow faster on xylan and its monomeric backbone molecule d-xylose. This strain also
showed improved ability of clearing xylan medium on plates. Furthermore, this strain has a changed
transcription profile concerning genes encoding for hydrolases and enzymes associated with degradation
of (hemi)celluloses. We demonstrated that enzymes of this strain from a xylan cultivation favoured break
ypocrea jecorina
iopolymer degradation
ydrolases

Hemi)cellulases
yr1

down of hemicelluloses to the monomer d-xylose compared to the parental strain, while the enzymes of
the latter one formed more xylobiose. Applying supernatants from cultivation on carboxymethylcellulose
in enzymatic conversion of hemicelluloses, the enzymes of the recombinant strain were clearly producing
more of both, d-xylose and xylobiose, compared to the parental strain. Altogether, these results point to a
changed hydrolase expression profile, an enhanced capability to form the xylan-monomer d-xylose and

is a
the assumption that there
Hypocrea.

. Introduction

Hypocrea jecorina (anamorph Trichoderma reesei [1]) is a fila-
entous ascomycete, which abundantly occurs wherever biomass

s available. This fungus is of noteworthy industrial impor-
ance, mainly because of its native extracellular enzymes that
re employed in different types of industry. These hydrolases
chieved a broad area of application covering pulp and paper
ndustry [2–4], food and feed industry [5–7], textile industry
8–10] and most recently, biofuel production [11–13]. The set of
ydrolytic enzymes produced by H. jecorina comprises amongst
thers two main cellobiohydrolases, CBHI and CBHII (EC 3.2.1.91)
e.g. [14]), endo-�-1,4-glucanases, EGLI to EGLV (EC 3.2.1.4)
e.g. [15]), two major specific endo-�-1,4-xylanases, XYNI and
YNII (EC 3.2.1.8) [16], and one �-xylosidase BXLI (EC 3.2.1.37)

17]. This set of hydrolases is synergistically working together

o attain a complete degradation of biopolymeric substrates of
hich cellulose and xylan are predominant. In this particular
ecomposition process these enzymes cause hydrolysis to smaller,
oluble oligo- and monosaccharides, which finally can act directly
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disordered induction pattern if the Xylanase regulator 1 is de-regulated in

© 2010 Elsevier B.V. 

as low-molecular weight inducer substances (e.g. xylobiose,
d-xylose) [18,19].

For a certain industrial employment of these enzymes the com-
position of the cocktail is crucial: some applications demand for
cellulases or hemicellulases exclusively, others need exact ratios of
cellulases to hemicellulases. In the past, it was demonstrated that a
simple deletion or insertion of multiple copies of various hydrolytic
enzyme-encoding genes from/into Hypocrea genomes did not sub-
stantially alter the composition of produced enzymes [20,21]. This
insight provoked other strategies as the regulation of gene expres-
sion of (hemi)cellulases. Consequently, during the last years a major
target of research in this field became the transcription factors
involved in the regulation of hydrolase expression.

Some years ago, we identified the main transcriptional activator
of hydrolase-encoding genes in H. jecorina: Xyr1 (Xylanase regu-
lator 1) [22]. Xyr1 is a central regulatory protein responsible for
the activation of the most important hydrolytic enzyme-encoding
genes, including cbh1, cbh2, egl1, xyn1, xyn2, and bxl1. It also
contributes to the regulation of d-xylose metabolism because it
is essential for the activation of d-xylose reductase (Xyl1 [23])
expression [22]. This consequently implies that Xyr1 has also a

Open access under CC BY-NC-ND license. 
notable influence on lactose metabolism, which is further sup-
ported by an indirect influence on transcription of bga1 (encoding
�-galactosidase [24]) [25].

In 2008, different aspects of transcriptional regulation of xyr1
itself have been reported [26]. During this study, a H. jecorina strain,

dx.doi.org/10.1016/j.cattod.2010.12.038
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Table 1
Primers used throughout this study.

Name Sequence (5′–3′) Employment

actf TGAGAGCGGTGGTATCCACG act qPCR
actr GGTACCACCAGACATGACAATGTTG act qPCR
axe1fw CTGCGGAGGAGGCGATC axe1 qPCR
axe1r GGACGGGCGTCGAAACC axe1 qPCR
bga1f CGTTTGATCCTTTCGGCGGCT bga1 qPCR
bga1r CCAAAGGTCATGTATATGTTGAAGATGGTC bga1 qPCR
bxl1f GCCAACTTCGCCACCAAGG bxl1 qPCR
bxl1r CGGCAATCTGGTGGATCAATGTG bxl1 qPCR
chb1f GATGATGACTACGCCAACATGCTG cbh1 qPCR
cbh1r ACGGCACCGGGTGTGG cbh1 qPCR
cbh2f CTATGCCGGACAGTTTGTGGTG cbh2 qPCR
cbh2r GTCAGGCTCAATAACCAGGAGG cbh2 qPCR
egl1f CTGCAACGAGATGGATATCCTGG egl1 qPCR
egl1r GTAGTAGCTTTTGTAGCCGCTGC egl1 qPCR
glr1fw GGATACAGCGGCAACCTC glr1 qPCR
glr11r GTATGCTCAAACCTGGCGGC glr1 qPCR
swo1fw CTTGCGTCAACCGGCGG swo1 qPCR
swo1r CGGCAATGCTGGGGTAAGG swo1 qPCR
xorf CTGTGACTATGGCAACGAAAAGGAG xyl1 qPCR
xorr CACAGCTTGGACACGATGAAGAG xyl1 qPCR
xyn1f CAGCTATTCGCCTTCCAACAC xyn1 qPCR
M.E. Pucher et al. / Cataly

x7, expressing the xyr1 gene under the H. atroviridis (T. atro-
iride) nag1 (N-acetyl glucoseaminidase-encoding) promoter was
onstructed to ensure a constant expression level of xyr1. This strain
llows investigations on the effects of a constitutively expressed,
e-regulated (e.g. independent from carbon catabolite repression
aused by glucose) xyr1 expression [26]. In course of these analyses
e found that the nx7 grows faster on media containing xylan as

arbon source and that it clears this medium faster and completely
ompared to the parental strain [26].

In this study, we report in detail on the ability of the nx7 strain
o grow on different biopolymers and to form clearing zones on
ylan plates. We demonstrate that the constitutive expression of
he regulator protein Xyr1 leads to a different transcription pat-
ern of genes encoding for hydrolases and enzymes associated with
ecomposition of (hemi)celluloses. Consequently, we investigated
he degree of brake down of biopolymers to di- and monosaccha-
ides by enzymatic catalysis using supernatants of H. jecorina nx7
n comparison to supernatants of its parental strain.

. Materials and methods

.1. Fungal strains

H. jecorina (T. reesei) QM9414 (ATCC 26921) was used as parental
train throughout this study and nx7 strain as a recombinant strain
onstitutively expressing xyr1 [26]. Both strains were maintained
n malt agar.

.2. Determination of fungal growth and clearing properties

Strains were cultivated at 30 ◦C on agar plates containing
andels–Andreotti (MA) medium [27] without peptone, applying

% (w/v) d-xylose (Sigma, St. Louis, MO), birch wood xylan (Sigma),
rystalline cellulose (Merck Schuchardt OHG, München, Germany)
r carboxymethylcellulose (CMC) (Calbiochem, part of EMD Chem-
cals, affiliate of Merck, Darmstadt, Germany) as the sole carbon
ource. After 2 days agar pieces of 0.5 cm diameter were cut out and
laced on another agar plate containing the same carbon source.
hen growth diameters and clearing zones (if xylan was used) were
easured after 16.5, 24, 42, 48, 69.5, and 88.5 h. Values given are
eans of three biological replicates, standard deviations are below

%.

.3. Cultivation in a bioreactor

Cultivation in a bench top fermenter (Bioengineering AG, Wald,
witzerland) was carried out using 1 litre medium adjusted to pH
.5 comprising 20 g xylan (Lenzing, AG, Lenzing, Austria) or CMC,
.8 g (NH4)2SO4, 1 g MgSO4·7H2O, 4 g KH2PO4, 0.5 g NaCl, 0.5 g
ween 80, 0.1 g peptone, 5 mg FeSO4·7H2O, 1.7 mg MnSO4·H2O,
.4 mg ZnSO4·7H2O, and 2 mg CaCl2·2H2O dissolved/resuspended

n distilled water. Some drops glanapon (Becker, Wien, Austria)
ere added to the medium to avoid excessive foam formation. 108

onidia per litre (final concentration) were used as inoculums. Cul-
ivation was performed at 30 ◦C, pH 4.5, 0.3 vvm aeration rate and
00 rpm agitation rate until autolysis started. Each sample drawing
as followed by a microscopic analysis for infection control. Cul-

ure supernatant and mycelia were separated by filtration through
Miracloth filter (Calbiochem). Mycelia were stored in liquid nitro-
en for subsequent mRNA extraction.
.4. RNA-extraction, reverse transcription, qPCR

Harvested mycelia were homogenized in 1 ml peqGOLD TriFast
NA/RNA/protein purification system (PEQLAB Biotechnologie,
xyn1r CCAAAGTTGATGGGAGCAGAA xyn1 qPCR
xyn2f GGTCCAACTCGGGCAACTTT xyn2 qPCR
xyn2r CCGAGAAGTTGATGACCTTGTTC xyn2 qPCR

Erlangen, Germany) using a FastPrep FP120 BIO101 ThermoSa-
vant cell disrupter (Qbiogene, Carlsbad, US). DNA and RNA were
simultaneously isolated in a two-step-process according to the
manufacturer’s instructions.

Synthesis of cDNA from mRNA was carried out applying
RevertAidTM H Minus First Strand cDNA synthesis Kit (Fermentas,
St. Leon-Rot, Germany) according to the manufacturer’s instruc-
tions.

All quantitative PCRs (qPCRs) were performed in an iCycler iQ,
Real-Time Detection System (Bio-Rad, Herkules, US). The software
of the iCycler (iCycler iQ, Optical System Software, Version 3.0a,
Bio-Rad) was used to compile PCR protocols and to define plate
set-ups. All PCRs were carried out in triplicate in 25 �l reaction
mixtures including 1× iQ SYBR Green Supermix (Bio-Rad), 0.1 �M
forward primer, 0.1 �M reverse primer and as template cDNA (100-
fold diluted). Primers pairs are given in Table 1. Each run included
a blank (sterile bi-distilled water instead of sample) and a no-
amplification control (0.01% SDS added to the reaction mixture).
The following PCR protocols were followed: 3 min initial denatu-
ration at 95 ◦C, followed by 45 cycles of 15 s at 95 ◦C, 15 s at 59 ◦C
(for the target genes) or 60 ◦C (for act) and 15 s at 72 ◦C. The Optical
System Software set the threshold level automatically to noise-to-
signal ratio conditions. Results of transcription analyses are given
as relative transcript ratios with reference to the actin gene (act).

2.5. Enzyme assay

The 1 mL-assay for the enzymatic conversion of biopolymers
was performed in duplicates as follows. 1% (w/v) beech wood
xylan (Lenzing), birch wood xylan (Sigma), crystalline cellulose
(Merck Schuchardt OHG), carboxymethylcellulose (Calbiochem) or
Miscanthus giganteus in 50 mM Na-acetate buffer (pH 4.7) was
incubated with 100 �L of the supernatants of the cultivations in
a bioreactor using xylan or CMC as a substrate for 0, 20, 40, 60,
120, and 180 min at 40 ◦C. Afterwards the reaction was stopped by
adding 300 �L 2% (w/v) Trizma base (Sigma). Solid residues have

◦
been removed by centrifugation at 14,000 × g and 4 C for 10 min
prior to HPLC analysis. The M. giganteus was pre-treated by acidic
hydrolysis as described elsewhere for chitin [28]. But instead of
washing with water, the pH was adjusted with NaOH until neu-
tral and the M. giganteus suspension, containing NaCl, was dialyzed
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Fig. 1. Growth and clearing properties of H. jecorina QM9414 and nx7. (A) Growth
rates of both strains have been determined by cultivation on agar plates containing
the indicated carbon source or biopolymer at 30 ◦C. Additionally, the rate of clearing

is uninfluenced and expression of two genes is down-regulated
(Table 2). Interestingly, the expression of the xylanase-encoding
genes xyn1 and xyn2 is reduced in nx7, while bxl1 is elevated. It
also should be noted that two cellulase-encoding genes (cbh1, egl1)

Table 2
Transcription analysis of genes encoding for enzymes involved in the degradation
of (hemi)cellulose in H. jecorina QM9414 and nx7 after 40 h of cultivation on xylan.

Gene QM9414a nx7 compared to QM9414b

axe1 ++ ∼
bga1 + ∼
bxl1 ++ +
cbh1 +++ +
cbh2 + ∼
egl1 + +
glr1 +++ +
swo1 +++ +
xyl1 ++ +
xyn1 + −
24 M.E. Pucher et al. / Cataly

gainst water. Supernatants have been adjusted to the same protein
oncentrations before applied in the assay. Protein concentration
as measured using the Bradford assay (Bio-Rad).

.6. HPLC-analysis

Analyses were performed using a Thermo Finnigan Surveyor
PLC instrument (Thermo Fisher Scientific, MA, US). All 10 �L sam-
les were injected onto a Rezex RHM-Monosaccharide column (H+,
%, 150 mm × 7.8 mm; Phenomenex, CA, US). Water was used as the
obile phase and isocratic elution was followed at 85 ◦C, apply-

ng a flow rate of 0.6 mL/min for 20 min. The concentration was
etermined using d-xylose, xylobiose and glucose as a standard.

. Results and discussion

.1. De-regulated xyr1 expression leads to faster growth and
etter degradation of xylan

Xyr1, the main transcriptional activator of hydrolase-encoding
enes in H. jecorina [22], was expressed under the nag1 promoter
f H. atroviridis to study the effects of a de-regulated (e.g. glucose
epression independent) xyr1 expression [26]. It was previously
eported, that an according strain, nx7, was able to clear a xylan-
ontaining medium considerably earlier than the parental strain
M9414 [26]. Therefore, we decided to determine growth rates and
learing rates (if appropriate) on different biopolymers. We found
hat growth rates of nx7 on birch wood xylan and on its monosac-
haride d-xylose was elevated compared to QM9414 (Fig. 1A).
ccordingly, the clearing zone was formed faster by nx7 (Fig. 1A).

n contrast, on carboxymethylcellulose (CMC) the nx7 growth rate
as lower than the one from the parental strain. The mycelium of

oth strains on crystalline cellulose was so thin that it was not pos-
ible to measure the growth diameters (data not shown). QM9414
nd nx7 also differed in their phenotype on all those carbon sources
Fig. 1B). On CMC, nx7 produced a few, white spores, whereas those
f the parental strain were greenish, on d-xylose, nx7 sporulated
trongly circular and white, but the parental strain produced green
pores and a flashy, yellow metabolite, and on xylan, nx7 sporula-
ion was white to brownish while that from QM9414 was white to
reenish and again circular in both strains (Fig. 1B).

.2. De-regulation of xyr1 expression leads to a modified
ydrolase expression pattern in H. jecorina

The observation that nx7 is able to clear a xylan-containing
edium importantly faster than the parental strain and that the

rowth rate is increased as well, prompted us to look at the
ranscription of genes encoding for enzymes associated with degra-
ation of (hemi)cellulosic biopolymers. Therefore, both strains
ere cultivated in a bioreactor using xylan as the sole carbon

ource. When enough mycelium was built, we started to draw sam-
les, which was done after 30, 40 and 48 h of cultivation. After
xtraction of mRNA, it was reverse transcribed into cDNA, which
as used for subsequent quantitative PCR (qPCR) in order to anal-

se gene expression. The target genes we have chosen are three
mportant cellulase-encoding genes (cbh1, cbh2, and egl1), three
enes encoding for the major xylanases (xyn1, xyn2, and bxl1), two
enes encoding for side-chain cleaving enzymes: axe1 (encoding for
he acetylxylanesterase 1) and glr1 (encoding for the glucuronidase
), two inducer-providing enzyme-encoding genes (bga1 and xyl1),

nd an accession-providing enzyme-encoding gene, swo1 (encod-
ng for swollenin [29]). Because the transcript ratios of both strains
or all three sample-drawing time points were very similar, we have
hosen exemplarily the results from the analysis of the 40 h sample
Table 2). The first column gives a comparison of the transcription
of the xylan-containing medium was determined by measuring the clearing zone.
Values are means of three biological replicates; standard deviation was below 5%. (B)
Pictures of H. jecorina QM9414 and nx7 strains on the plates used for determination
of growth rates.

of the analysed genes in QM9414. The second column compares
transcription levels of a certain gene in nx7 to those in QM9414.
Altogether, expression of six genes is up-regulated, that of three
xyn2 ++++ −
a Transcription of given genes compared to xyn1; +, expressed; ++, stronger

expressed; +++ importantly stronger expressed.
b Transcript ratio of nx7 compared to QM9414 for a certain gene; −, less

expressed; ∼, equally expressed; +, stronger expressed.
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nd QM9414 (dark grey) for 0, 20, 40, 60, 120, 180 min at 40 ◦C. Afterwards HPLC-an
eans of four replicates (two biological replicates used in duplicates in the enzyme

re elevated in the xyr1 de-regulated strain (nx7) even if the culti-
ation was performed on xylan. Both issues will be addressed later.
otably, we could identify no direct relation between the function
f the enzymes for which the genes encode and the extent of chang-
ng their transcription (e.g. two cellulases are up-regulated, one is
naffected). Nor we found a clear relation between the circum-
tance if Xyr1 regulates genes and the extent of their transcription
odification (e.g. cbh2 is known to be regulated via Xyr1 [22], but

as not changed its transcription level). The latter observation may
e explained by the fact that although Xyr1 is an indispensable acti-
ator, the constant expression level of it alone is not always enough
o change the transcription of a certain gene. Certainly, one should
onsider that other regulatory mechanisms and even other tran-
cription factors play a role. Summarizing, it can be stated that a
uite simple intervention as the de-regulation of the main tran-
cription activator Xyr1 leads to a modified gene expression profile
n H. jecorina.

.3. H. jecorina nx7 enzymes produced in xylan fermentation
avour break down of hemi-celluloses to the monomer d-xylose

As mentioned above, transcription analysis of nx7 and the

arental strain grown on xylan revealed higher expression of bxl1,
ut lower expression of xyn1 and xyn2 in nx7 compared to QM9414
Table 2). We were interested if this observation could be confirmed
y the enzymatic activity of the fungus. Thus, supernatants from the
ermentations of both strains on xylan have been used for enzy-
ic catalysis using supernatants from H. jecorina fermentations on birch wood xylan.
teus (C and F) were incubated with supernatants from H. jecorina nx7 (light grey)
was performed using d-xylose (A–C) and xylobiose (D–F) as standards. Values are

); standard deviation was below 5%.

matic conversion of hemicellulosic biopolymers. After incubation
of the hemicelluloses with the supernatants at 40 ◦C for 0, 20, 40, 60,
120, 180 min HPLC analyses were done. We found that the decom-
position to the monomer d-xylose (Fig. 2A–C) was clearly elevated
in the nx7 strain compared to the parental strain, regardless if birch
wood xylan (Fig. 2A), beech wood xylan (Fig. 2B) or M. giganteus
(Fig. 2C) was used as substrate. Notably, the disaccharide xylobiose
was formed in higher amounts applying the QM9414 supernatant,
if the substrate was birch wood xylan (Fig. 2D) or beech wood
xylan (Fig. 2E), and if M. giganteus was the substrate it was only
detectable in small amounts in QM9414 (Fig. 2F). This perfectly fits
the transcription analysis results (Table 2), which indicated that
bxl1, responsible for enzymatic catalysis of xylobiose to d-xylose,
is higher expressed in nx7, whereas xyn1 and xyn2, cleaving the
xylan-backbone into oligo- and disaccharides is less expressed in
nx7.

3.4. H. jecorina nx7 enzymes, produced in CMC fermentation,
increase the overall degradation of hemicelluloses

The finding that genes encoding for cellulases were stronger
expressed in the nx7 strain even if grown on xylan (Table 2), pointed

at a de-regulation of induction mechanisms and suggested to exam-
ine vice versa the ability of enzymes in supernatants of both strains,
grown on CMC, to catalyze degradation of hemicelluloses. Thus, the
enzyme assay was performed according to the one using super-
natants from cultivation on xylan (vide supra). This time, we found
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M9414 (dark grey) for 0, 20, 40, 60, 120, 180 min at 40 ◦C. Afterwards HPLC-ana
eans of four replicates (two biological replicates used in duplicates in the enzyme

hat both d-xylose formation (Fig. 3A–C) and xylobiose formation
Fig. 3D–F) was higher in nx7 whatever hemicellulosic biopoly-

er was applied: birch wood xylan (Fig. 3A and D), beech wood
ylan (Fig. 3B and E) or M. giganteus (Fig. 3C and F). This allows the
ssumption that the de-regulation of xyr1 also leads to a shifted
nduction pattern. Although if xylanases and cellulases are always
xpressed in a coordinate manner on (hemi)celluloses [30], the
eleased oligo- or disaccharides (e.g. xylobiose) favour the induc-
ion of certain genes responsible for their formation (e.g. xyn1, and
yn2) (e.g. [31–33]). In case of the nx7 strain, these inducer speci-
cities seem to be more diffuse, which may result from constitutive
xpression of xyr1 that mediates all induction signals (received
rom d-xylose, xylobiose, etc.) [34,35].

The single xylobiose peak at time point zero in Fig. 3F obviously
esults from a low amount of xylobiose present in the fermenta-
ion supernatant of nx7 and this peak most probably disappears
t later time points because the xylobiose from the supernatant is
hen completely degraded to d-xylose as well as the in the assay
ecomposed M. giganteus.

.5. De-regulation of xyr1 expression leads to increased
egradation of crystalline cellulose even with enzymes produced
n xylan fermentation

As already emphasized, the gene expression analysis of both
trains after cultivation on xylan surprisingly showed elevated
ranscription of cellulase-encoding genes in the xyr1 de-regulated
matic catalysis using supernatants from H. jecorina fermentations on CMC. The
(C and F) were incubated with supernatants from H. jecorina nx7 (light grey) and
as performed using d-xylose (A–C) and xylobiose (D–F) as standards. Values are

); standard deviation was below 5%.

strain (nx7) (Table 2). Therefore, we decided to compare the decom-
position rate of crystalline cellulose after enzymatic catalysis using
supernatants from fermentation on xylan and CMC of both strains.
The enzyme assay was performed according to the previous ones
(vide supra), and HPLC analysis was performed using the monomer
of cellulose, glucose, as standard. The formation of glucose was
equally or even elevated using the supernatant of nx7 grown on
xylan (Fig. 4A) compared to the supernatant of nx7 grown on CMC
(Fig. 4B). Moreover, the formation of glucose was equally or ele-
vated (for 180 min of incubation time) using enzymes from the
xylan fermentation of nx7 compared to those of QM9414 (Fig. 4A).
Of course, also the parental strain QM9414 was able to degrade
crystalline cellulose to glucose even if supernatant from cultivation
on xylan was applied (Fig. 4A), most likely due to the coordinate
expression of xylanases and cellulases on (hemi)cellulosic sub-
strates [30]. Nevertheless, glucose formation using supernatant of
QM9414 grown on CMC was slightly higher than if that from xylan
cultivation was applied (compare Fig. 4B and A). These findings
again point at a possible shift in induction patterns if expression of
xyr1 is de-regulated.

Accordingly, we performed an enzyme assay using CMC as the
biopolymer to be converted, catalyzed by supernatants from culti-

vation of both strains on xylan. Surprisingly, this does never lead
to an improved degradation of CMC to glucose applying the super-
natant of nx7 compared to the supernatant of the parental strain
(Fig. 5A). So, this clearly differs concerning the 180 min incuba-
tion time from the previous result using crystalline cellulose as
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Fig. 4. Analysis of the conversion of crystalline cellulose to its monosaccharide via
enzymatic catalysis using supernatants from different H. jecorina fermentations. The
biopolymer was incubated with supernatants from H. jecorina nx7 (light grey) and
Q
6
a
d

s
t
e
T

F
v
w
w
m
p
l
b

M9414 (dark grey) fermentations on birch wood xylan (A) and CMC (B) for 0, 20, 40,
0, 120, 180 min at 40 ◦C. Afterwards HPLC-analysis was performed using glucose
s standard. Values are means of four replicates (two biological replicates used in
uplicates in the enzyme assay); standard deviation was below 5%.
ubstrate (for better comparison again pictured in Fig. 5B). In con-
rast to the amorphous CMC, crystalline cellulose rather needs an
nzyme improving the accessibility of substrates like swollenin.
herefore, the increased expression of swollenin in nx7 (Table 2),

ig. 5. Analysis of the conversion of cellulosic biopolymers to its monosaccharide
ia enzymatic catalysis using supernatants from H. jecorina fermentations on birch
ood xylan. The biopolymers CMC (A) and crystalline cellulose (B) were incubated
ith supernatants from H. jecorina nx7 (light grey) and QM9414 (dark grey) fer-
entations for 0, 20, 40, 60, 120, 180 min at 40 ◦C. Afterwards HPLC-analysis was

erformed using glucose as standard. Values are means of four replicates (two bio-
ogical replicates used in duplicates in the enzyme assay); standard deviation was
elow 5%.
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might be a possible explanation for the finding that nx7 supernatant
decomposes crystalline cellulose better, but CMC worse than the
parental strain. Of course, this is rather a speculation demanding
for further proof.

4. Conclusions

The intervention in gene regulation by means of changing the
expression of a transcription factor, like Xyr1, led to a modified
gene expression profile, different inducer specificity, and maybe
an improved accessibility of substrates in H. jecorina. This is a quite
simple action and has a distinct impact, which recommends itself
as an important tool for designing strains that produce requested
compositions of hydrolases. A useful extension of this strategy
would be the precise engineering of the regulatory proteins (e.g.
their permanent activation).
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