86 research outputs found
Harnessing spatial thinking to support mathematics teaching and learning
The 8th Conference on Research in Mathematics Education in Ireland (MEI 8), Dublin, Ireland (held online due to Coronavirus outbreak), 15-16 October 2021There is a growing consensus that spatial thinking is fundamental in how students conceive, express and perform mathematics. Decades of research show that building spatial skills yields measurable impacts on learning. This paper highlights however that the translation of research into explicit and systematic classroom practices to support spatial thinking in post-primary mathematics is not widespread. The aim of this paper is to: present a rationale for spatially enhancing mathematics curricula and pedagogy; to consider some existing tools and frameworks in the field; and to highlight the need for research that develops our understanding of effective practice that promotes spatial thinking in the mathematics classroom
High Achieving Students in Leaving Certificate Mathematics: Why has the gender gap widened?
The Seventh Conference on Research in Mathematics Education in Ireland (MEI7), Dublin, Ireland, 11-12 October 2019Research has identified a gender gap in the mathematical attainment of post-primary students around the world, favouring male students. In Ireland, following a review of the outcomes of a high-stakes examination taken by students at the end of post-primary schooling over an 18- year period, a similar such gap has been identified here and is widening. Data are presented to show that this gender gap widened with the introduction of a revised post-primary mathematics curriculum, colloquially known as Project Maths. This paper explores potential reasons behind the widening gap. Problem solving appears to be the pivotal issue and spatial ability may be a contributory factor. Addressing studentsâ spatial ability is explored as way to address the gender gap and enable students to reach their full mathematical potential
Trajectory Mapping and Applications to Data from the Upper Atmosphere Research Satellite
The problem of creating synoptic maps from asynoptically gathered trace gas data has prompted the development of a number of schemes. Most notable among these schemes are the Kalman filter, the Salby-Fourier technique, and constituent reconstruction. This paper explores a new technique called trajectory mapping. Trajectory mapping creates synoptic maps from asynoptically gathered data by advecting measurements backward or forward in time using analyzed wind fields. A significant portion of this work is devoted to an analysis of errors in synoptic trajectory maps associated with the calculation of individual parcel trajectories. In particular, we have considered (1) calculational errors; (2) uncertainties in the values and locations of constituent measurements, (3) errors incurred by neglecting diabatic effects, and (4) sensitivity to differences in wind field analyses. These studies reveal that the global fields derived from the advection of large numbers of measurements are relatively insensitive to the errors in the individual trajectories. The trajectory mapping technique has been successfully applied to a variety of problems. In this paper, the following two applications demonstrate the usefulness of the technique: an analysis of dynamical wave-breaking events and an examination of Upper Atmosphere Research Satellite data accuracy
Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome
peer-reviewedBackground Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Results Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways - selenoamino acid metabolism and steroid biosynthesis - illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease.Department of Agriculture and Food, Ireland - Food Institutional Research Measure (project no. 5254); IRCSET postgraduate scholarship
scheme (MJM); Science Foundation Ireland Principal Investigator Programme (HMR)
Programme
Upper limb prostheses: bridging the sensory gap
Replacing human hand function with prostheses goes far beyond only recreating muscle movement with feedforward motor control. Natural sensory feedback is pivotal for fine dexterous control and finding both engineering and surgical solutions to replace this complex biological function is imperative to achieve prosthetic hand function that matches the human hand. This review outlines the nature of the problems underlying sensory restitution, the engineering methods that attempt to address this deficit and the surgical techniques that have been developed to integrate advanced neural interfaces with biological systems. Currently, there is no single solution to restore sensory feedback. Rather, encouraging animal models and early human studies have demonstrated that some elements of sensation can be restored to improve prosthetic control. However, these techniques are limited to highly specialized institutions and much further work is required to reproduce the results achieved, with the goal of increasing availability of advanced closed loop prostheses that allow sensory feedback to inform more precise feedforward control movements and increase functionality
Functional and Psychosocial Outcomes of Hand Transplantation Compared with Prosthetic Fitting in Below-Elbow Amputees:A Multicenter Cohort Study
BACKGROUND:Hand-transplantation and improvements in the field of prostheses opened new frontiers in restoring hand function in below-elbow amputees. Both concepts aim at restoring reliable hand function, however, the indications, advantages and limitations for each treatment must be carefully considered depending on level and extent of amputation. Here we report our findings of a multi-center cohort study comparing hand function and quality-of-life of people with transplanted versus prosthetic hands. METHODS:Hand function in amputees with either transplant or prostheses was tested with Action Research Arm Test (ARAT), Southampton Hand Assessment Procedure (SHAP) and the Disabilities of the Arm, Shoulder and Hand measure (DASH). Quality-of-life was compared with the Short-Form 36 (SF-36). RESULTS:Transplanted patients (n = 5) achieved a mean ARAT score of 40.86 ± 8.07 and an average SHAP score of 75.00 ± 11.06. Prosthetic patients (n = 7) achieved a mean ARAT score of 39.00 ± 3.61 and an average SHAP score of 75.43 ± 10.81. There was no significant difference between transplanted and prosthetic hands in ARAT, SHAP or DASH. While quality-of-life metrics were equivocal for four scales of the SF-36, transplanted patients reported significantly higher scores in "role-physical" (p = 0.006), "vitality" (p = 0.008), "role-emotional" (p = 0.035) and "mental-health" (p = 0.003). CONCLUSIONS:The indications for hand transplantation or prosthetic fitting in below-elbow amputees require careful consideration. As functional outcomes were not significantly different between groups, patient's best interests and the route of least harm should guide treatment. Due to the immunosuppressive side-effects, the indication for allotransplantation must still be restrictive, the best being bilateral amputees
A modelling approach to investigate the impact of consumption of three different beef compositions on human dietary fat intakes
Objective: To apply a dietary modelling approach to investigate the impact of substituting beef intakes with three types of alternative fatty acid (FA) composition of beef on population dietary fat intakes. Design: Cross-sectional, national food consumption survey â the National Adult Nutrition Survey (NANS). The fat content of the beef-containing food codes (n 52) and recipes (n 99) were updated with FA composition data from beef from animals receiving one of three ruminant dietary interventions: grass-fed (GRASS), grass finished on grass silage and concentrates (GSC) or concentrate-fed (CONC). Mean daily fat intakes, adherence to dietary guidelines and the impact of altering beef FA composition on dietary fat sources were characterised. Setting: Ireland. Participants: Beef consumers (n 1044) aged 18â90 years. Results: Grass-based feeding practices improved dietary intakes of a number of individual FA, wherein myristic acid (C14 : 0) and palmitic acid (C16 : 0) were decreased, with an increase in conjugated linoleic acid (C18 : 2c9,t11) and trans-vaccenic acid (C18 : 1t11; P < 0·05). Improved adherence with dietary recommendations for total fat (98·5 %), SFA (57·4 %) and PUFA (98·8 %) was observed in the grass-fed beef scenario (P < 0·001). Trans-fat intakes were increased significantly in the grass-fed beef scenario (P < 0·001). Conclusions: To the best of our knowledge, the present study is the first to characterise the impact of grass-fed beef consumption at population level. The study suggests that habitual consumption of grass-fed beef may have potential as a public health strategy to improve dietary fat quality
Translating Research on Myoelectric Control into Clinics-Are the Performance Assessment Methods Adequate?
Missing an upper limb dramatically impairs daily-life activities. Significant efforts in overcoming the issues arising from this disability have been made in both academia and industry, although their clinical outcome is still limited. Translation of prosthetic research into clinics has been challenging because of the difficulties in meeting the necessary requirements of the market. In this perspective, we focus on myocontrol algorithms for upper limb prostheses and we emphasize that one relevant factor determining the relatively small clinical impact of these methods is the limit of commonly used laboratory performance metrics. The laboratory conditions, in which the majority of the solutions are being evaluated, fail to sufficiently replicate real-life challenges. We qualitatively substantiate this argument with data from seven transradial amputees. Their ability to control a myoelectric prosthesis was tested by measuring the accuracy of offline EMG signal classification, as a typical laboratory performance metrics, as well as by clinical scores when performing standard tests of daily living. Despite all subjects reached relatively high classification accuracy offline, their clinical scores were largely different and were not strongly predicted by classification accuracy. As argued in previous reports, we reinforce the suggestion to test myocontrol systems using clinical tests on amputees, fully fitted with sockets and prostheses highly resembling the systems they would use in daily living, as evaluation benchmark. Agreement on this level of testing for systems developed in research laboratories would facilitate clinically relevant progresses in this field.<br
- âŠ