15 research outputs found
Cornering Solar Radiative-Zone Fluctuations with KamLAND and SNO Salt
We update the best constraints on fluctuations in the solar medium deep
within the solar Radiative Zone to include the new SNO-salt solar neutrino
measurements. We find that these new measurements are now sufficiently precise
that neutrino oscillation parameters can be inferred independently of any
assumptions about fluctuation properties. Constraints on fluctuations are also
improved, with amplitudes of 5% now excluded at the 99% confidence level for
correlation lengths in the range of several hundred km. Because they are
sensitive to correlation lengths which are so short, these solar neutrino
results are complementary to constraints coming from helioseismology.Comment: 4 pages, LaTeX file using RevTEX4, 6 figures include
Models of Neutrino Masses and Mixings
We review theoretical ideas, problems and implications of neutrino masses and
mixing angles. We give a general discussion of schemes with three light
neutrinos. Several specific examples are analyzed in some detail, particularly
those that can be embedded into grand unified theories.Comment: 44 pages, 2 figures, version accepted for publication on the Focus
Issue on 'Neutrino Physics' edited by F.Halzen, M.Lindner and A. Suzuki, to
be published in New Journal of Physics
Electron Antineutrino Search at the Sudbury Neutrino Observatory
Upper limits on the \nuebar flux at the Sudbury Neutrino Observatory have
been set based on the \nuebar charged-current reaction on deuterium. The
reaction produces a positron and two neutrons in coincidence. This distinctive
signature allows a search with very low background for \nuebar's from the Sun
and other potential sources. Both differential and integral limits on the
\nuebar flux have been placed in the energy range from 4 -- 14.8 MeV. For an
energy-independent \nu_e --> \nuebar conversion mechanism, the integral limit
on the flux of solar \nuebar's in the energy range from 4 -- 14.8 MeV is found
to be \Phi_\nuebar <= 3.4 x 10^4 cm^{-2} s^{-1} (90% C.L.), which corresponds
to 0.81% of the standard solar model 8B \nu_e flux of 5.05 x 10^6 cm^{-2}
s^{-1}, and is consistent with the more sensitive limit from KamLAND in the 8.3
-- 14.8 MeV range of 3.7 x 10^2 cm^{-2} s^{-1} (90% C.L.). In the energy range
from 4 -- 8 MeV, a search for \nuebar's is conducted using coincidences in
which only the two neutrons are detected. Assuming a \nuebar spectrum for the
neutron induced fission of naturally occurring elements, a flux limit of
Phi_\nuebar <= 2.0 x 10^6 cm^{-2} s^{-1}(90% C.L.) is obtained.Comment: submitted to Phys. Rev.
Dark Energy from Mass Varying Neutrinos
We show that mass varying neutrinos (MaVaNs) can behave as a negative
pressure fluid which could be the origin of the cosmic acceleration. We derive
a model independent relation between the neutrino mass and the equation of
state parameter of the neutrino dark energy, which is applicable for general
theories of mass varying particles. The neutrino mass depends on the local
neutrino density and the observed neutrino mass can exceed the cosmological
bound on a constant neutrino mass. We discuss microscopic realizations of the
MaVaN acceleration scenario, which involve a sterile neutrino. We consider
naturalness constraints for mass varying particles, and find that both ev
cutoffs and ev mass particles are needed to avoid fine-tuning. These
considerations give a (current) mass of order an eV for the sterile neutrino in
microscopic realizations, which could be detectable at MiniBooNE. Because the
sterile neutrino was much heavier at earlier times, constraints from big bang
nucleosynthesis on additional states are not problematic. We consider regions
of high neutrino density and find that the most likely place today to find
neutrino masses which are significantly different from the neutrino masses in
our solar system is in a supernova. The possibility of different neutrino mass
in different regions of the galaxy and the local group could be significant for
Z-burst models of ultra-high energy cosmic rays. We also consider the cosmology
of and the constraints on the ``acceleron'', the scalar field which is
responsible for the varying neutrino mass, and briefly discuss neutrino density
dependent variations in other constants, such as the fine structure constant.Comment: 26 pages, 3 figures, refs added, typos corrected, comment added about
possible matter effect
Measurement of neutron production in atmospheric neutrino interactions at the Sudbury Neutrino Observatory
Neutron production in giga electron volt–scale neutrino interactions is a poorly studied process. We have measured the neutron multiplicities in atmospheric neutrino interactions in the Sudbury Neutrino Observatory experiment and compared them to the prediction of a Monte Carlo simulation using GENIEand a minimally modified version of GEANT4. We analyzed 837 days of exposure corresponding to Phase I, using pure heavy water, and Phase II, using a mixture of Cl in heavy water. Neutrons produced in atmospheric neutrino interactions were identified with an efficiency of 15.3% and 44.3%, for Phases I and II respectively. The neutron production is measured as a function of the visible energy of the neutrino interaction and, for charged current quasielastic interaction candidates, also as a function of the neutrino energy. This study is also performed by classifying the complete sample into two pairs of event categories: charged current quasielastic and non charged current quasielastic, and νμ and νe. Results show good overall agreement between data and Monte Carlo for both phases, with some small tension with a statistical significance below 2σ for some intermediate energies
Astrophysical Origins of Ultrahigh Energy Cosmic Rays
In the first part of this review we discuss the basic observational features
at the end of the cosmic ray energy spectrum. We also present there the main
characteristics of each of the experiments involved in the detection of these
particles. We then briefly discuss the status of the chemical composition and
the distribution of arrival directions of cosmic rays. After that, we examine
the energy losses during propagation, introducing the Greisen-Zaptsepin-Kuzmin
(GZK) cutoff, and discuss the level of confidence with which each experiment
have detected particles beyond the GZK energy limit. In the second part of the
review, we discuss astrophysical environments able to accelerate particles up
to such high energies, including active galactic nuclei, large scale galactic
wind termination shocks, relativistic jets and hot-spots of Fanaroff-Riley
radiogalaxies, pulsars, magnetars, quasar remnants, starbursts, colliding
galaxies, and gamma ray burst fireballs. In the third part of the review we
provide a brief summary of scenarios which try to explain the super-GZK events
with the help of new physics beyond the standard model. In the last section, we
give an overview on neutrino telescopes and existing limits on the energy
spectrum and discuss some of the prospects for a new (multi-particle)
astronomy. Finally, we outline how extraterrestrial neutrino fluxes can be used
to probe new physics beyond the electroweak scale.Comment: Higher resolution version of Fig. 7 is available at
http://www.angelfire.com/id/dtorres/down3.html. Solicited review article
prepared for Reports on Progress in Physics, final versio
Tests of Lorentz invariance at the Sudbury Neutrino Observatory
Experimental tests of Lorentz symmetry in systems of all types are critical
for ensuring that the basic assumptions of physics are well-founded. Data from
all phases of the Sudbury Neutrino Observatory, a kiloton-scale heavy water
Cherenkov detector, are analyzed for possible violations of Lorentz symmetry in
the neutrino sector. Such violations would appear as one of eight possible
signal types in the detector: six seasonal variations in the solar electron
neutrino survival probability differing in energy and time dependence, and two
shape changes to the oscillated solar neutrino energy spectrum. No evidence for
such signals is observed, and limits on the size of such effects are
established in the framework of the Standard Model Extension, including 40
limits on perviously unconstrained operators and improved limits on 15
additional operators. This makes limits on all minimal, Dirac-type Lorentz
violating operators in the neutrino sector available for the first time
Measurement of the nu(e) and total B-8 solar neutrino fluxes with the Sudbury neutrino observatory phase I data set
No description supplie
Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory
We report results from a combined analysis of solar neutrino data from all phases of the Sudbury Neutrino Observatory. By exploiting particle identification information obtained from the proportional counters installed during the third phase, this analysis improved background rejection in that phase of the experiment. The combined analysis resulted in a total flux of active neutrino flavors from 8B decays in the Sun of (5.25 \pm 0.16(stat.)+0.11-0.13(syst.))\times10^6 cm^{-2}s^{-1}. A two-flavor neutrino oscillation analysis yielded \Deltam^2_{21} = (5.6^{+1.9}_{-1.4})\times10^{-5} eV^2 and tan^2{\theta}_{12}= 0.427^{+0.033}_{-0.029}. A three-flavor neutrino oscillation analysis combining this result with results of all other solar neutrino experiments and the KamLAND experiment yielded \Deltam^2_{21} = (7.41^{+0.21}_{-0.19})\times10^{-5} eV^2, tan^2{\theta}_{12} = 0.446^{+0.030}_{-0.029}, and sin^2{\theta}_{13} = (2.5^{+1.8}_{-1.5})\times10^{-2}. This implied an upper bound of sin^2{\theta}_{13} < 0.053 at the 95% confidence level (C.L.)