3,792 research outputs found
Higher serum levels of periostin and the risk of exacerbations in moderate asthmatics
BACKGROUND: In asthma, exacerbations and poor disease control are linked to airway allergic inflammation. Serum periostin has been proposed as a systemic biomarker of eosinophilic inflammation. This pilot study aims at evaluating whether in patients with moderate asthma, higher baseline levels of serum periostin are associated with a greater risk of exacerbation.
METHODS: Fifteen outpatients with moderate allergic asthma were recruited. Serum concentrations of periostin were assessed (ELISA) at baseline, and the frequency of asthma exacerbations was recorded during a one-year follow-up.
RESULTS: Patients (M/F: 10/5, mean age of 47.6\u2009\ub1\u200911.0 years) had mean ACQ score of 5.5\u2009\ub1\u20094.2 and FEV1%pred of 81.9\u2009\ub1\u200921.7 %. Baseline serum levels of periostin did not correlate with lung function parameters, nor with the ACQ score (p 650.05 for all analyses). Five subjects (33 % of the study group) reported one or more exacerbations during the following year. Baseline serum levels of periostin were significantly higher in subjects who experienced one or more exacerbations during the one year period of follow-up, compared with subjects with no exacerbations: median serum periostin level was 4047 ng/ml (range: 2231 to 4889 ng/ml) and 222
ng/ml (range 28.2 to 1631 ng/ml) respectively; p\u2009=\u20090.001.
CONCLUSION: The findings of the present pilot study could form the basis for the design of larger studies aiming at developing strategies to identify asthmatic patients at risk for exacerbations
Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits
The interaction of optical and mechanical modes in nanoscale optomechanical
systems has been widely studied for applications ranging from sensing to
quantum information science. Here, we develop a platform for cavity
optomechanical circuits in which localized and interacting 1550 nm photons and
2.4 GHz phonons are combined with photonic and phononic waveguides. Working in
GaAs facilitates manipulation of the localized mechanical mode either with a
radio frequency field through the piezo-electric effect, or optically through
the strong photoelastic effect. We use this to demonstrate a novel acoustic
wave interference effect, analogous to coherent population trapping in atomic
systems, in which the coherent mechanical motion induced by the electrical
drive can be completely cancelled out by the optically-driven motion. The
ability to manipulate cavity optomechanical systems with equal facility through
either photonic or phononic channels enables new device and system
architectures for signal transduction between the optical, electrical, and
mechanical domains
Natural killer cells attenuate cytomegalovirus-induced hearing loss in mice
<div><p>Congenital cytomegalovirus (CMV) infection is the most common non-hereditary cause of sensorineural hearing loss (SNHL) yet the mechanisms of hearing loss remain obscure. Natural Killer (NK) cells play a critical role in regulating murine CMV infection via NK cell recognition of the Ly49H cell surface receptor of the viral-encoded m157 ligand expressed at the infected cell surface. This Ly49H NK receptor/m157 ligand interaction has been found to mediate host resistance to CMV in the spleen, and lung, but is much less effective in the liver, so it is not known if this interaction is important in the context of SNHL. Using a murine model for CMV-induced labyrinthitis, we have demonstrated that the Ly49H/m157 interaction mediates host resistance in the temporal bone. BALB/c mice, which lack functional Ly49H, inoculated with mCMV at post-natal day 3 developed profound hearing loss and significant outer hair cell loss by 28 days of life. In contrast, C57BL/6 mice, competent for the Ly49H/m157 interaction, had minimal hearing loss and attenuated outer hair cell loss with the same mCMV dose. Administration of Ly49H blocking antibody or inoculation with a mCMV viral strain deleted for the m157 gene rendered the previously resistant C57BL/6 mouse strain susceptible to hearing loss to a similar extent as the BALB/c mouse strain indicating a direct role of the Ly49H/m157 interaction in mCMV-dependent hearing loss. Additionally, NK cell recruitment to sites of infection was evident in the temporal bone of inoculated susceptible mouse strains. These results demonstrate participation of NK cells in protection from CMV-induced labyrinthitis and SNHL in mice.</p></div
TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson's Disease.
Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies
Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial
Background : By the early 1980s, tuberculosis treatment was shortened from 24 to 6 months, maintaining relapse rates of 1-2%. Subsequent trials attempting shorter durations have failed, with 4-month arms consistently having relapse rates of 15-20%. One trial shortened treatment only among those without baseline cavity on chest x-ray and whose month 2 sputum culture converted to negative. The 4-month arm relapse rate decreased to 7% but was still significantly worse than the 6-month arm (1.6%, P<0.01). We hypothesize that PET/CT characteristics at baseline, PET/CT changes at one month, and markers of residual bacterial load will identify patients with tuberculosis who can be cured with 4 months (16 weeks) of standard treatment.Methods: This is a prospective, multicenter, randomized, phase 2b, noninferiority clinical trial of pulmonary tuberculosis participants. Those eligible start standard of care treatment. PET/CT scans are done at weeks 0, 4, and 16 or 24. Participants who do not meet early treatment completion criteria (baseline radiologic severity, radiologic response at one month, and GeneXpert-detectable bacilli at four months) are placed in Arm A (24 weeks of standard therapy). Those who meet the early treatment completion criteria are randomized at week 16 to continue treatment to week 24 (Arm B) or complete treatment at week 16 (Arm C). The primary endpoint compares the treatment success rate at 18 months between Arms B and C.Discussion: Multiple biomarkers have been assessed to predict TB treatment outcomes. This study uses PET/CT scans and GeneXpert (Xpert) cycle threshold to risk stratify participants. PET/CT scans are not applicable to global public health but could be used in clinical trials to stratify participants and possibly become a surrogate endpoint. If the Predict TB trial is successful, other immunological biomarkers or transcriptional signatures that correlate with treatment outcome may be identified. TRIAL REGISTRATION: NCT02821832
Set optimization - a rather short introduction
Recent developments in set optimization are surveyed and extended including
various set relations as well as fundamental constructions of a convex analysis
for set- and vector-valued functions, and duality for set optimization
problems. Extensive sections with bibliographical comments summarize the state
of the art. Applications to vector optimization and financial risk measures are
discussed along with algorithmic approaches to set optimization problems
Quantum nondemolition measurement of mechanical motion quanta
The fields of opto- and electromechanics have facilitated numerous advances
in the areas of precision measurement and sensing, ultimately driving the
studies of mechanical systems into the quantum regime. To date, however, the
quantization of the mechanical motion and the associated quantum jumps between
phonon states remains elusive. For optomechanical systems, the coupling to the
environment was shown to preclude the detection of the mechanical mode
occupation, unless strong single photon optomechanical coupling is achieved.
Here, we propose and analyse an electromechanical setup, which allows to
overcome this limitation and resolve the energy levels of a mechanical
oscillator. We find that the heating of the membrane, caused by the interaction
with the environment and unwanted couplings, can be suppressed for carefully
designed electromechanical systems. The results suggest that phonon number
measurement is within reach for modern electromechanical setups.Comment: 8 pages, 5 figures plus 24 pages, 11 figures supplemental materia
Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family
Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al
Structural insights into Clostridium perfringens delta toxin pore formation
Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins
Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways
It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers
- …