90 research outputs found

    Constraints on the shapes of galaxy dark matter haloes from weak gravitational lensing

    Full text link
    We study the shapes of galaxy dark matter haloes by measuring the anisotropy of the weak gravitational lensing signal around galaxies in the second Red-sequence Cluster Survey (RCS2). We determine the average shear anisotropy within the virial radius for three lens samples: all galaxies with 19<m_r'<21.5, and the `red' and `blue' samples, whose lensing signals are dominated by massive low-redshift early-type and late-type galaxies, respectively. To study the environmental dependence of the lensing signal, we separate each lens sample into an isolated and clustered part and analyse them separately. We also measure the azimuthal dependence of the distribution of physically associated galaxies around the lens samples. We find that these satellites preferentially reside near the major axis of the lenses, and constrain the angle between the major axis of the lens and the average location of the satellites to =43.7 deg +/- 0.3 deg for the `all' lenses, =41.7 deg +/- 0.5 deg for the `red' lenses and =42.0 deg +/- 1.4 deg for the `blue' lenses. For the `all' sample, we find that the anisotropy of the galaxy-mass cross-correlation function =0.23 +/- 0.12, providing weak support for the view that the average galaxy is embedded in, and preferentially aligned with, a triaxial dark matter halo. Assuming an elliptical Navarro-Frenk-White (NFW) profile, we find that the ratio of the dark matter halo ellipticity and the galaxy ellipticity f_h=e_h/e_g=1.50+1.03-1.01, which for a mean lens ellipticity of 0.25 corresponds to a projected halo ellipticity of e_h=0.38+0.26-0.25 if the halo and the lens are perfectly aligned. For isolated galaxies of the `all' sample, the average shear anisotropy increases to =0.51+0.26-0.25 and f_h=4.73+2.17-2.05, whilst for clustered galaxies the signal is consistent with zero. (abridged)Comment: 28 pages, 23 figues, accepted for publication in A&

    The Halos of Satellite Galaxies: the Companion of the Massive Elliptical Lens SL2S J08544-0121

    Full text link
    Strong gravitational lensing by groups or clusters of galaxies provides a powerful technique to measure the dark matter properties of individual lens galaxies. We study in detail the mass distribution of the satellite lens galaxy in the group-scale lens SL2S J08544-0121 by modelling simultaneously the spatially extended surface brightness distribution of the source galaxy and the lens mass distribution using Markov chain Monte Carlo methods. In particular, we measure the dark matter halo size of the satellite lens galaxy to be 6.0^{+2.9}_{-2.0} kpc with a fiducial velocity dispersion of 127^{+21}_{-12} km/s. This is the first time the size of an individual galaxy halo in a galaxy group has been measured using strong gravitational lensing without assumptions of mass following light. We verify the robustness of our halo size measurement using mock data resembling our lens system. Our measurement of the halo size is compatible with the estimated tidal radius of the satellite galaxy, suggesting that halos of galaxies in groups experience significant tidal stripping, a process that has been previously observed on galaxies in clusters. Our mass model of the satellite galaxy is elliptical with its major axis misaligned with that of the light by ~50 deg. The major axis of the total matter distribution is oriented more towards the centre of the host halo, exhibiting the radial alignment found in N-body simulations and observational studies of satellite galaxies. This misalignment between mass and light poses a significant challenge to modified Newtonian dynamics.Comment: 13 pages, 10 figures, minor revisions based on referee's comments, accepted for publication in A&

    Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens

    Get PDF
    The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e–e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from −20 to −1100 V/mm for Ekin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 μm above the sample surface for Ekin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at Ekin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm2 (retarding field −21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm2, it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at Ekin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments

    Pancreatic cancerrelated cachexia: influence on metabolism and correlation to weight loss and pulmonary function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dramatic weight loss is an often underestimated symptom in pancreatic cancer patients. Cachexia- defined as an unintended loss of stable weight exceeding 10% – is present in up to 80% of patients with cancer of the upper gastrointestinal tract, and has a significant influence on survival. The aim of the study was to show the multiple systemic effects of cachexia in pancreatic cancer patients, in terms of resection rate, effects on pulmonary function, amount of fat and muscle tissue, as well as changes in laboratory parameters.</p> <p>Methods</p> <p>In patients with pancreatic cancer, clinical appearance was documented, including the amount of weight loss. Laboratory parameters and lung-function tests were evaluated, and the thickness of muscle and fat tissue was measured with computed tomography scans. Statistical analysis, including multivariate analysis, was performed using SPSS software. Survival curves were calculated using Kaplan-Meier analysis and the log-rank test. To test for significant differences between the examined groups we used Student's t-test and the Mann-Whitney U test. Significance was defined as p < 0.05.</p> <p>Results</p> <p>Of 198 patients with a ductal adenocarcinoma of the pancreas, 70% were suffering from weight loss when they presented for operation, and in 40% weight loss exceeded 10% of the stable weight. In patients with cachexia, metastases were diagnosed significantly more often (47% vs. 24%, P < 0.001), leading to a significantly reduced resection rate in these patients. Patients with cachexia had significantly reduced fat tissue amounts. Hence, dramatic weight loss in a patient with pancreatic cancer may be a hint of a more progressed or more aggressive tumour.</p> <p>Conclusion</p> <p>Pancreatic cancer patients with cachexia had a higher rate of more progressed tumour stages and a worse nutritional status. Furthermore, patients with cachexia had an impaired lung function and a reduction in fat tissue. Patients with pancreatic cancer and cachexia had significantly reduced survival. If weight loss exceeded 5% there was a significantly reduced resection rate to detect, but the changes were significantly more substantial if weight loss was 10% or more. We propose that a weight loss of 10% be defined as significant in pancreatic cancer.</p

    Galaxy-galaxy lensing constraints on the relation between baryons and dark matter in galaxies in the Red Sequence Cluster Survey 2

    Full text link
    We present the results of a study of weak gravitational lensing by galaxies using imaging data that were obtained as part of the second Red Sequence Cluster Survey (RCS2). In order to compare to the baryonic properties of the lenses we focus here on the ~300 square degrees that overlap with the DR7 of the SDSS. The depth and image quality of the RCS2 enables us to significantly improve upon earlier work for luminous galaxies at z>=0.3. Comparison with dynamical masses from the SDSS shows a good correlation with the lensing mass for early-type galaxies. For low luminosity (stellar mass) early-type galaxies we find a satellite fraction of ~40% which rapidly decreases to <10% with increasing luminosity (stellar mass). The satellite fraction of the late-types has a value in the range 0-15%. We find that early-types in the range 10^10<L_r<10^11.5 Lsun have virial masses that are about five times higher than those of late-type galaxies and that the mass scales as M_200 \propto L^2.34 +0.09 \ -0.16. We also measure the virial mass-to-light ratio, and find for L_200<10^11 Lsun a value of M_200/L_200=42+-10 for early-types, which increases for higher luminosities to values that are consistent with those observed for groups and clusters of galaxies. For late-type galaxies we find a lower value of M_200/L_200=17+-9. Our measurements also show that early- and late-type galaxies have comparable halo masses for stellar masses M_*<10^11 Msun, whereas the virial masses of early-type galaxies are higher for higher stellar masses. Finally, we determine the efficiency with which baryons have been converted into stars. Our results for early-type galaxies suggest a variation in efficiency with a minimum of ~10% for a stellar mass M_*,200=10^12 Msun. The results for the late-type galaxies are not well constrained, but do suggest a larger value. (abridged)Comment: 25 pages, 24 figures. Resubmitted to A&

    Nutritional and environmental regulation of the synthesis of highly unsaturated fatty acids and of fatty-acid oxidation in Atlantic salmon (Salmo salar L.) enterocytes and hepatocytes

    Get PDF
    The aim was to determine if highly unsaturated fatty acid (HUFA) synthesis and fatty acid oxidation in Atlantic salmon (Salmo salar L.) intestine was under environmental and/or seasonal regulation. Triplicate groups of salmon were grown through a full two-year cycle on two diets containing either fish oil (FO), or a diet with 75% of the FO replaced by a vegetable oil (VO) blend containing rapeseed, palm and linseed oils. At key points in the life cycle, fatty acyl desaturation/elongation (HUFA synthesis) and oxidation activities were determined in enterocytes and hepatocytes using [1-14C]18:3n-3 as substrate. As observed previously, HUFA synthesis in hepatocytes showed peak activity at seawater transfer and declined thereafter, with activity consistently greater in fish fed the VO diet. In fish fed FO, HUFA synthesis in enterocytes in the freshwater stage was at a similar level to that in hepatocytes. However, HUFA synthesis in enterocytes increased rapidly after seawater transfer and remained high for some months after transfer before decreasing to levels that were again similar to those observed in hepatocytes. Generally, enterocyte HUFA synthesis was higher in fish fed the VO diet compared to the FO diet. Oxidation of [1-14C]18:3n-3 in hepatocytes from fish fed FO tended to decrease during the freshwater phase but then increased steeply, peaking just after transfer before decreasing during the remaining seawater phase. At the peak in oxidation activity around seawater transfer, activity was significantly lower in fish fed VO compared to fish fed FO. In enterocytes, oxidation of [1-14C]18:3 in fish fed FO showed a peak in activity just prior to seawater transfer. In fish fed VO, other than high activity at 9 months, the pattern was similar to that obtained in enterocytes from fish fed FO with a high activity around seawater transfer and declining activity in seawater. In conclusion, fatty acid metabolism in intestinal cells appeared to be under dual nutritional and environmental or seasonal regulation. The temporal patterns for fatty acid oxidation were generally similar in the two cell types, but HUFA synthesis in enterocytes peaked over the summer seawater phase rather than at transfer, as with hepatocytes, suggesting possibly different regulatory cues
    corecore