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Cold fronts occur in northern East Asia during winter and spring. After cold frontal passage, airflow is downward and accompa-
nying strong winds fluctuate significantly; this is termed wind gusts. Analysis of observation data shows that wind gust structure 
has coherent characteristics. This is important for entrainment of spring dust storms into the upper boundary layer, where they are 
transported great distances. The Lattice Boltzmann Method (LBM) is a computational fluid technique based on the Boltzmann 
transport equation. The LBM has been used to study complex motion such as turbulence, because it describes motion at the micro 
level. In this paper, Large eddy simulation is introduced in the LBM, enabling simulation of turbulent flow in the atmospheric 
boundary layer. The formation and development of wind gusts are simulated, and a coherent structure with a combination of wave 
and vortex is obtained. This explains the mechanism of soil erosion and sand entrainment by the coherent structure of wind gusts. 
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Air motion in the atmospheric boundary layer is very com-
plicated because of effects such as earth rotation, tempera-
ture stratification, water-gas transport and complex underly-
ing surfaces [1]. Stull classified flow into three categories— 
average wind speeds, turbulence and waves. The wave 
fluctuations can be formed by shear flow or average flow 
over obstacles, and they can be transported very far from 
thunderstorms and other weather systems [2]. Atmospheric 
fluctuations sometimes strengthen local wind shear, forming 
turbulence. World Meteorological Organization (WMO) [3] 
defines fluctuations larger than turbulence but less than av-
erage wind speeds as wind gusts. Weather patterns that 
produce wind gusts include strong convection, fronts, radia-
tion inversion type low-level jets, strong low-level wind 
shear generated by geography, and others. Instantaneous 
speeds of gusts can reach 9 on the Beaufort scale, or about 
80 km per hour, which can be highly destructive. For exam-
ple, large equipment in a port must withstand unexpected 

strong gusts, and an aircraft in flight will suffer additional 
load generated by gusts. 

In addition to this destructive power, gusts are accompa-
nied by severe weather. The outbreak of dust storms is 
closely related to development of a dry squall line (a violent 
gust) ahead of a strong cold front [1]. This is a serious phe-
nomenon that is common in spring in Northeast Asia. Even 
more common is strong wind after cold frontal passage, 
which occurs very suddenly with gustiness [2–8]. The co-
herent structure of wind gusts is important in the mechanism 
of sand-dust erosion and entrainment [9–11]. However, there 
has been little detailed study of wind gust structure, espe-
cially of the coherent characteristics of horizontal and ver-
tical velocities. 

Wind gusts are usually forecast by weather forecast mod-
els [12–14], time series analysis [15,16] and other methods. 
In engineering, the destructive effects of gusts are studied 
through the gust spectrum [17], gust parameterization 
[18–21], wind tunnel simulation and other methods [22,23]. 
In these methods, wind gust fluctuation is assumed to obey 
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a Gaussian distribution. However, recent studies show that 
this assumption is not suitable for wind gusts after cold 
frontal passage [24–28]. During this period of strong winds, 
there are often regular wind gust wave packets, with periods 
equal to about 3–6 min. These wave packets are superim-
posed on the non-stationary strong basic airflow, although 
the unsteady basic flow also has some gustiness (very low 
frequency disturbances). A wind gust possesses a clearly 
coherent structure, i.e. vertical velocity is downward when 
horizontal velocity is at its peak, but is upward when hori-
zontal velocity is at a minimum. The downward horizontal 
momentum is very conducive to soil erosion and sand/dust 
emissions. However, the strong basic flow with descending 
motion suppresses entrainment of dust particles, by keeping 
them at low levels of the atmospheric boundary layer (about 
200 m height). Owing to the coherent structure of wind 
gusts, dust particles can effectively overcome the systematic 
descending air motion and penetrate mid and upper levels of 
the boundary layer. These particles can then propagate fur-
ther and diffuse into the troposphere, where ascending air 
motion prevails. The coherent structure of wind gusts is an 
effective mechanism of soil erosion and dust entrainment. 
However, the related theory is obtained from analysis of 
observation data at single stations. It needs verification by 
further experimental and numerical simulation. 

In the 1980s, studies were done of vertical profiles of 
post-cold frontal gust structure, using data from a Beijing 
325 m meteorological tower [29–31]. In recent years, some 
have used advanced numerical methods, such as large eddy 
simulation (LES) modeling, to simulate microbursts, hurri-
canes, and other phenomena [32,33]. The Lattice Boltzmann 
Method (LBM) describes motion at the micro level, and can 
directly simulate complex motion such as turbulence 

[34–40]. However, for the atmospheric boundary layer, the 
grids cannot be fine enough, and the LBM cannot numeri-
cally simulate airflow directly. Therefore, we introduce a 
LES model to simulate the fine structure of wind gusts. 

1  Numerical method 

1.1  Lattice Boltzmann equation 

The Boltzmann transport equation can be discretized with a 
lattice gas method, attaining the lattice Boltzmann equation,  

 ( , 1) ( , ) ,i i i if x e t f x t      (1) 

where subscript i denotes the direction of particle motion. 
Because of enormous computation of the collision term 

i, Bhatnager et al. [41] proposed in 1954 that detailed de-
scription of the interaction between vortices and the true, 
unknown collision effect is unimportant. They gave a sim-
plified collision mode, so that the Boltzmann equation was 
simplified to 

  eq1f f
v f f

t x 
 

    
 


. (2) 

In this form of the equation, the collision term, called the 
relaxation term, includes a characteristic time scale  and 
local equilibrium distribution f eq in time. This is called the 
BGK model. It describes the physical nature of molecular 
interaction. τ is molecular collision time, which is also 
called relaxation time. The BGK model seems only suitable 
for the local equilibrium state; however, it was realized that 
the approximation can expand the limit of the theory as far 
as the duration of the relaxation time covering related phys-
ical characteristics. In the turbulent BGK model,  is sub-
stituted for by a typical turbulent relaxation time turb. Hi-
guera et al. [42,43] revised the lattice Boltzmann equation 
according to the BGK model as LBGK: 
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The macro-density of the fluid  (x,t) and macro-velocity 
u (x,t) can be obtained from the particle distribution function 
fi (x,t), 
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The pressure can be obtained by p= cs
2; cs is velocity of 

sound. From a formal viewpoint, the evolution of the LBGK 
model is a relaxation process. Through the relaxation accel-
eration of the micro-particle density distribution function fi 
to its equilibrium state fi

eq, the system quickly reaches the 
objective state.  

1.2  DdQq model 

In the LBGK model, the DdQq series of Qian et al. [44] are 
most widely used, wherein d denotes the space dimension 
and q the numbers of discrete velocities. The local equilib-
rium distribution function of such a model can be written as 
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where  is fluid density, u is fluid velocity, cs is the velocity 
of sound, ci=cei is discrete velocity, and i are weights in 
different discrete velocity directions. The viscosity coeffi-
cient of the DdQq model is 
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s

1
,
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where v is the viscosity coefficient. In two-dimensional 
space, the DdQq model includes D2Q7 and D2Q9. In three- 
dimensional space, it includes D3Q15, D3Q19 and D3Q27. 
As mentioned in the introduction, analysis of observation 
data shows that coherence of the gust in the vertical direc-
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tion (viz. the coherent structure between horizontal and ver-
tical velocity) is primary, and the wind gust is the propaga-
tion process of two-dimensional wave and vortex. Therefore, 
we simulate here the two-dimensional boundary layer wind 
field, using the D2Q9 model. This model has a two-dimen-    
sional, square grid structure, as shown in Figure 1. Its parti-
cle velocity has nine directions, given by the following 
equation:  

(0,0),    0;

1 1
cos ,sin , 1,2,3,4;

2 2

5 5
2 cos ,sin ,  5,6, 7,8.

2 4 2 4
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The equilibrium distribution function of the model is  
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wherein i=4/9 when i=0, i=1/9 when i=1,2,3,4, and i= 
1/36 when i=4,6,7,8. 

Macro-density  and macro-velocity u can be obtained: 
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In this model, the velocity of sound is cs
2=c2/3, pressure is 

p=c2/3, and viscosity is v=(0.5)c2t/3. 

1.3  Large eddy model 

For high Re number turbulent flow, the LBM is less stable. 
An effective solution is to combine it with a turbulent flow 
model. Here, the large-eddy model is introduced into the  

 

Figure 1  D2Q9 model. 

lattice Boltzmann equation, and the equation is filtered to 
retain large-scale calculation; small-scale effects are calcu-
lated by the eddy viscosity, which is determined by a sub- 
grid scale (SGS) model. 

In the LES model, a variable is decomposed into large- 
scale and small-scale variables, such as ,     where-

in the large-scale variable   is obtained by  filtered by 

( , ) ( , ) ( , )dx t x t G x x x      (G is a filter function). The 

small-scale variable is .      To filter the LBM dis-

crete equation, it is supposed that eq eq( , ) ( , ),i if u f u   

and the effective relaxation time turb is obtained from 
2

0 s turb( 0.5).t c        Now, s 1 3c   is the veloc-

ity of sound in the model and vt is eddy viscosity deter-
mined by the specific SGS model, such as the Smagorinsky 

model [45–48], 2( ) .t C S   In this expression, C is the 

model coefficient,  is the width of the filter, S  is the 
strain rate tensor, 
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, and , , ,i j i jQ    wherein ,i j  is 

the local non-equilibrium strain tensor, ,i j   
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2  Flow field simulation 

2.1  Test example 

To test the accuracy of the calculation, we first simulate 
Poiseuille flow, with constant pressure gradient-driven, two- 
dimensional cavity flow. Then we compare the simulation 
results with analytical solutions or data from the literature. 

(i) Poiseuille flow.  Between two parallel plates, there is 
flow with viscosity v, and a given constant pressure gradient 
between inlet and outlet. The analytical solution of flow 

velocity is 
2 2

2
( )

2

G L y y
u y

L L
 

  
 

, where L is the distance 

between plates, and G p x    is the pressure gradient. 

The region of simulation is 0 x 2, 0 y 1. The grids are 
128×64. The initial velocity is zero. The initial density is 1.0. 
Re=LUmax/v=1500, and Umax=L2G/8v is the flow velocity at 
the center of the plates. The pressure gradient is p=0.1. 
After several steps, the flow field becomes stable (Figure 2). 

Because of the limit of Poiseuille flow, the Reynolds 
number is small. Although the simulation result with the 
D2Q9 model is good, the advantage of LES is not demon-
strated. 
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Figure 2  Comparison between simulation and analytical solution of 
Poiseuille flow [49]. 

(ii) Two-dimensional cavity flow.  Next, we simulated 
two-dimensional cavity flow with a larger Reynolds number. 
The flow field is a two-dimensional square cavity. The up-
per boundary of the cavity moves at a constant horizontal 
velocity, while the other three boundaries remain stationary. 
The cavity is characterized by the appearance of a first-class 
large vortex in the central cavity, and of two secondary vor-
tices at the two bottom angles. The value of the stream 
function and the central positions of these vortices are func-
tions of Reynolds number [50] Re=LU/ν, where L is the 
cavity height, U is the drag speed, and ν is the viscosity co-
efficient. In 1982, Ghia et al. [51] discussed in detail 
two-dimensional cavity flow. We simulated cavity flow for 
Re = 5000, and compared the result with that of Ghia et al. 

For smaller Reynolds number, only three vortices appear, 
the primary vortex in the cavity center and a pair of second-
ary vortices in the lower left and lower right corners. As the 
Reynolds number increases, a third secondary vortex ap-
pears at the upper-left corner, and the center of the primary 
vortex moves to the cavity center. This is consistent with 
previous studies (Figure 3). Comparing the horizontal ve-
locity on the centerline, the calculation agrees with the re-
sults of Ghia et al., as shown in Figure 4. The accuracy is 
satisfactory. 

2.2  Simulation of wind gusts in atmospheric boundary 
layer 

(i) Boundary condition.  The wind profile in the boundary 
layer after cold frontal passage is obtained by analyzing 
data from the Beijing 325 m meteorological tower. The data 
includes fifteen levels of low-frequency wind speed (0.05 Hz), 
and three levels of high-frequency, ultrasonic anemometer 
wind speed (10 Hz) [52]. Figure 5(a) and (b) shows vertical 
profiles of horizontal wind speed ( u ) and vertical velocity 
( w ). They were obtained from an average of 133 hours of  

 

Figure 3  Streamline of cavity flow.  

 

Figure 4  Horizontal velocity on center line. 

wind data, which were in dust storms, from 2000 to 2004. A 
windy period is defined such that the hourly average wind 
speed 8 m s1 at 120 m height. The set of points in the fig-
ure represents the 133 hours of data, the middle curve is 
their ensemble average, and dashed lines are vertical pro-
files that lie one standard deviation (plus or minus) from the 
ensemble mean. 

There is sinking air after cold frontal passage, as shown 
by the figures. We used the ensemble profiles as boundary 
conditions. The computational domain is the boundary layer 
with horizontal distance x = 2 km, and vertical height z is   
1 km. 

Appropriate boundary conditions are necessary when 
solving the flow problem. Usually these boundary condi-
tions are macro-physical quantities. However, in LBM, the 
evolution is the distribution function. One must determine 
the distribution function on the boundaries according to 
macro boundary conditions. 
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Figure 5  Profile of horizontal and vertical velocity during sand storms. 
Diamonds are 133 hour-average wind speeds (very dense, almost in a line); 
the circle is ensemble average of 133 hours of data; dashed lines are plus or 
minus one standard deviation from the ensemble mean. Solid circles are 
wind speeds over the same period, but obtained from wind cup at 15 levels. 

According to the macro profile, the inlet distribution 
function is eq

i if f [53], the outlet is determined by the 

finite-difference velocity gradient method [54], eq
i if f   

neq eq
2
s

: .i
i i if f Q S

c


   Here, 2

si i iQ c c c I   is the tensor, 

I is the unit tensor, S u   is the strain tensor, and the 
symbol : denotes contraction between two tensors. 

The lower boundary is the wall and the upper boundary 
is the slip condition. 

(ii) Scale transformation.  As with other CFD methods, 
there are similarities between the simulation model and ac-
tual flow field during LBM simulation of practical problems. 
The initial and boundary conditions of the actual flow field 
are transformed into model initial and boundary conditions, 
model calculations are done, finally reverting to the actual 
flow, based on the similarity relationship. Since this calcu-
lation is for the turbulent boundary layer, the Reynolds num-

ber should be kept constant during the conversion process. 
Assuming the actual flow field parameters are character-

istic length L, characteristic velocity U, time step T, and 
kinematic viscosity vp during the simulation, we take the 
characteristic length N (if N grids, each of length l=1), 
characteristic velocity u, and 

 l
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N
  , u

U

u
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Other parameters can be similarly determined, attaining 
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Through v, the relaxation time can be obtained as  
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For the LBM, the computation is stable only when u<cs; 

then s ,
tl

c
T





viz. t < csT should be assured (http: //www. 

lbmethod.org/_media/howtos:lbunits.pdf). 

2.3  Calculation result 

Based on the above calculations, we obtain the formation of 
wind gusts. In windy conditions after cold frontal passage, 
sinking air produces a strong shear. This makes the vortex 
oscillate up and down, causing gusty wind fluctuations. The 
calculations with and without the LES model were com-
pared. We found more small-scale eddies were generated in 
the LES mode, and the results were closer to the actual flow 
field. Figure 6 is the vorticity field at the 60-min point. The 
upper figure was produced with the LES model, and the 
lower figure without it. It is seen that there are vortices at 
300 m height and these oscillate up and down, because the 
sinking air is about 300 m thick. Since the maximum ob-
servation height is 280 m, the observed downdraft thickness 
may be slightly less than actual. We determined the thick-
ness of the simulated sinking air at 300 m through radar 
observations. In the figure, x is horizontal distance, z is 
height, with units in m. The legend shows vorticity values 
by a gray scale; light colors show a counterclockwise vortex, 
dark a clockwise vortex. Figure 7 shows wind speed vectors 
from actual observation (10 Hz), and rising and sinking  
airflow. 

We also calculated the vertical profile of wind speed at 
horizontal distances (x) of 100, 500 and 1000 m. Since 100 
m is too close to the entrance, the flow does not fully de-
velop and is influenced by inlet conditions, so the result 
there is not given. Figure 8 shows the vertical profile of 
wind speed at 500 and 1000 m. The figure shows that hori-
zontal wind speed decreases at the air separation height (z = 

280 m), which is consistent with the observed results. In 
Figure 5(a), the horizontal wind speed measured by wind  
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Figure 6  Simulation of flow field in boundary layer after cold frontal 
passage.  

 

Figure 7  Wind speed vectors of actual flow field. 

cups (solid dots) at 240 m height is reduced. From Figure 6, 
we see that in windy conditions after cold frontal passage, 
gustiness is strongest at the level of air separation, leading 
to a decrease in horizontal wind speed. This results from the 
sinking air producing a strong shear, causing the upward 
and downward motion of the vortex, which in turn generates 
the gustiness. As to the vertical wind speed, there is a 
downdraft below 320 m, with speed first increasing then 
decreasing with height. Above 320 m, the airflow is upward. 
This finding is consistent with the observations (Figure 
5(b)). 

As mentioned in the introduction, we found from the data 
that there were gusts of main period 3–6 min in post-frontal 
windy conditions, and that the flow could be decomposed 
into basic flow, wind gust and turbulence [52]. Using this 
method, we decomposed the wind speed time series at x = 

1000 m, z = 280 m, as shown in Figure 9. This is similar to 
Figure 3 of [52]. We use the extracted time series of gusts 
and turbulence to calculate the gust friction velocity ug* and 
turbulence friction velocity ut* at various heights [52]. Re-
sults are shown in Figure 10. Both are the same order of 
magnitude, indicating that the energy contained in wind 
gusts is comparable to that in turbulence. In windy condi-
tions, therefore, wind gusts should not be ignored. Gust 
friction velocity is large at the height of air separation. Tur-
bulence friction velocity is large close to the wall and de-
creases with height; it increases again at the height of air 
separation. This is consistent with observations [52]. In ad-
dition, as the horizontal distance increases, the gust friction 
velocity gradually increases, while the turbulent friction 
velocity wanes. 

3  Conclusion 

We use the LBM with the large eddy model to simulate the 
generation and development of wind gusts. The simulation 
results show that in the windy conditions after cold frontal  

 

Figure 8  Vertical profile of U and w at various horizontal distances. 
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Figure 9  Horizontal wind speed, gusts and turbulence at x=1000 m and z=280 m. 

 

Figure 10  Vertical profile of gusts and turbulence friction velocity at various horizontal distances.  

passage, there is airflow separation upward and downward. 
This creates strong shear, forms upward and downward 
moving wavy vortices, and causes gusty wind fluctuations. 
The large-eddy simulation model produces results closer to 
experimental observations. 

Further analysis shows that at the level of air separation, 
wind speed decreases, the speed of sinking maximizes 
slightly below that level, and decreases with distance from 
that level. By extracting the gust structure, we see that the 
magnitude of gust friction velocity is comparable to turbu-
lence friction velocity. Turbulence friction velocity is large 
near the ground, resulting in sand erosion. As height in-
creases, the gust friction velocity gradually increases and 
equals turbulence friction velocity, so that both contribute to 
dust entrainment. Also with increasing height, gust friction 
velocity becomes larger than turbulent friction velocity, and 
thereby becomes the major factor in dust entrainment. This 
is more obvious in the downstream direction. 

This work was supported by the National Natural Science Foundation of 
China (40875008) and the National Basic Research Program of China 
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