1,395 research outputs found

    Computing Black Hole entropy in Loop Quantum Gravity from a Conformal Field Theory perspective

    Get PDF
    Motivated by the analogy proposed by Witten between Chern-Simons and Conformal Field Theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in Loop Quantum Gravity. The consistency of the result opens a window for the interplay between Conformal Field Theory and the description of black holes in Loop Quantum Gravity.Comment: 9 page

    Effect of the curvature and the {\beta} parameter on the nonlinear dynamics of a drift tearing magnetic island

    Get PDF
    We present numerical simulation studies of 2D reduced MHD equations investigating the impact of the electronic \beta parameter and of curvature effects on the nonlinear evolution of drift tearing islands. We observe a bifurcation phenomenon that leads to an amplification of the pressure energy, the generation of E \times B poloidal flow and a nonlinear diamagnetic drift that affects the rotation of the magnetic island. These dynamical modifications arise due to quasilinear effects that generate a zonal flow at the onset point of the bifurcation. Our simulations show that the transition point is influenced by the \beta parameter such that the pressure gradient through a curvature effect strongly stabilizes the transition. Regarding the modified rotation of the island, a model for the frequency is derived in order to study its origin and the effect of the \beta parameter. It appears that after the transition, an E \times B poloidal flow as well as a nonlinear diamagnetic drift are generated due to an amplification of the stresses by pressure effects

    Large non-Gaussian Halo Bias from Single Field Inflation

    Full text link
    We calculate Large Scale Structure observables for non-Gaussianity arising from non-Bunch-Davies initial states in single field inflation. These scenarios can have substantial primordial non-Gaussianity from squeezed (but observable) momentum configurations. They generate a term in the halo bias that may be more strongly scale-dependent than the contribution from the local ansatz. We also discuss theoretical considerations required to generate an observable signature.Comment: 30 pages, 14 figures, typos corrected and minor changes to match published version JCAP09(2012)00

    Loop Quantum Gravity and the The Planck Regime of Cosmology

    Full text link
    The very early universe provides the best arena we currently have to test quantum gravity theories. The success of the inflationary paradigm in accounting for the observed inhomogeneities in the cosmic microwave background already illustrates this point to a certain extent because the paradigm is based on quantum field theory on the curved cosmological space-times. However, this analysis excludes the Planck era because the background space-time satisfies Einstein's equations all the way back to the big bang singularity. Using techniques from loop quantum gravity, the paradigm has now been extended to a self-consistent theory from the Planck regime to the onset of inflation, covering some 11 orders of magnitude in curvature. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects, such as a modification of the consistency relation involving the scalar and tensor power spectra and a new source for non-Gaussianities. Thus, the genesis of the large scale structure of the universe can be traced back to quantum gravity fluctuations \emph{in the Planck regime}. This report provides a bird's eye view of these developments for the general relativity community.Comment: 23 pages, 4 figures. Plenary talk at the Conference: Relativity and Gravitation: 100 Years after Einstein in Prague. To appear in the Proceedings to be published by Edition Open Access. Summarizes results that appeared in journal articles [2-13

    Detailed black hole state counting in loop quantum gravity

    Get PDF
    We give a complete and detailed description of the computation of black hole entropy in loop quantum gravity by employing the most recently introduced number-theoretic and combinatorial methods. The use of these techniques allows us to perform a detailed analysis of the precise structure of the entropy spectrum for small black holes, showing some relevant features that were not discernible in previous computations. The ability to manipulate and understand the spectrum up to the level of detail that we describe in the paper is a crucial step towards obtaining the behavior of entropy in the asymptotic (large horizon area) regime

    Conformal Symmetry for General Black Holes

    Full text link
    We show that the warp factor of a generic asymptotically flat black hole in five dimensions can be adjusted such that a conformal symmetry emerges. The construction preserves all near horizon properties of the black holes, such as the thermodynamic potentials and the entropy. We interpret the geometry with modified asymptotic behavior as the "bare" black hole, with the ambient flat space removed. Our warp factor subtraction generalizes hidden conformal symmetry and applies whether or not rotation is significant. We also find a relation to standard AdS/CFT correspondence by embedding the black holes in six dimensions. The asymptotic conformal symmetry guarantees a dual CFT description of the general rotating black holes.Comment: 26 page

    Electric-magnetic duality and renormalization in curved spacetimes

    Get PDF
    We point out that the duality symmetry of free electromagnetism does not hold in the quantum theory if an arbitrary classical gravitational background is present. The symmetry breaks in the process of renormalization, as also happens with conformal invariance. We show that a similar duality anomaly appears for a massless scalar field in 1 + 1 dimensions

    Numerical loop quantum cosmology: an overview

    Get PDF
    A brief review of various numerical techniques used in loop quantum cosmology and results is presented. These include the way extensive numerical simulations shed insights on the resolution of classical singularities, resulting in the key prediction of the bounce at the Planck scale in different models, and the numerical methods used to analyze the properties of the quantum difference operator and the von Neumann stability issues. Using the quantization of a massless scalar field in an isotropic spacetime as a template, an attempt is made to highlight the complementarity of different methods to gain understanding of the new physics emerging from the quantum theory. Open directions which need to be explored with more refined numerical methods are discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and Quantum Gravity special issue on Non-Astrophysical Numerical Relativit

    Loop Quantum Cosmology: A Status Report

    Get PDF
    The goal of this article is to provide an overview of the current state of the art in loop quantum cosmology for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply loop quantum cosmology to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that, as described at the end of section I, each of these communities can read only the sections they are most interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical and Quantum Gravity. Typos corrected, clarifications and references adde

    "Charged" Particle's Tunneling from Rotating Black Holes

    Full text link
    The behavior of a scalar field theory near the event horizon in a rotating black hole background can be effectively described by a two dimensional field theory in a gauge field background. Based on this fact, we proposal that the quantum tunneling from rotating black hole can be treated as "charged" particle' s tunneling process in its effectively two dimensional metric. Using this viewpoint and considering the corresponding "gauge charge" conservation, we calculate the non-thermal tunneling rate of Kerr black hole and Myers-Perry black hole, and results are consistent with Parikh-Wilczek's original result for spherically symmetric black holes. Especially for Myers-Perry black hole which has multi-rotation parameters, our calculation fills in the gap existing in the literature applying Parikh-Wilczek's tunneling method to various types black holes. Our derivation further illuminates the essential role of effective gauge symmetry in Hawking radiation from rotating black holes.Comment: 15 pages, no figure; any comments are welcome
    • …
    corecore