6,476 research outputs found
Cell death machinery makes life more robust
CED-3, a protein that is essential for programmed cell death, also has an unexpected role in the regulation of non-apoptotic genes during normal development
The missing metals problem. III How many metals are expelled from galaxies?
[Abridged] We revisit the metal budget at z~2. In the first two papers of
this series, we already showed that ~30% (to <60% if extrapolating the LF) of
the metals are observed in all z~2.5 galaxies detected in current surveys.
Here, we extend our analysis to the metals outside galaxies, i.e. in
intergalactic medium (IGM), using observational data and analytical
calculations. Our results for the two are strikingly similar: (1)
Observationally, we find that, besides the small (5%) contribution of DLAs, the
forest and sub-DLAs contribute subtantially to make <30--45% of the metal
budget, but neither of these appear to be sufficient to close the metal budget.
The forest accounts for 15--30% depending on the UV background, and sub-DLAs
for >2% to <17% depending on the ionization fraction. Together, the `missing
metals' problem is substantially eased. (2) We perform analytical calculations
based on the effective yield--mass relation. At z=2, we find that the method
predicts that 2$--50% of the metals have been ejected from galaxies into the
IGM, consistent with the observations. The metal ejection is predominantly by
L<1/3L_B^*(z=2) galaxies, which are responsible for 90% the metal enrichment,
while the 50 percentile is at L~1/10L^*_B(z=2). As a consequence, if indeed 50%
of the metals have been ejected from galaxies, 3--5 bursts of star formation
are required per galaxy prior to z=2. The ratio between the mass of metals
outside galaxies to those in stars has changed from z=2 to z=0: it was 2:1 or
1:1 and is now 1:8 or 1:9. This evolution implies that a significant fraction
of the IGM metals will cool and fall back into galaxies.Comment: 18pages, MNRAS, in press; small changes to match proofs; extended
version with summary tabl
Electron degeneracy and intrinsic magnetic properties of epitaxial Nb:SrTiO thin-films controlled by defects
We report thermoelectric power experiments in e-doped thin films of SrTiO
(STO) which demonstrate that the electronic band degeneracy can be lifted
through defect management during growth. We show that even small amounts of
cationic vacancies, combined with epitaxial stress, produce a homogeneous
tetragonal distortion of the films, resulting in a Kondo-like resistance upturn
at low temperature, large anisotropic magnetoresistance, and non-linear Hall
effect. Ab-initio calculations confirm a different occupation of each band
depending on the degree of tetragonal distortion. The phenomenology reported in
this paper for tetragonally distorted e-doped STO thin films, is similarto that
observed in LaAlO/STO interfaces and magnetic STO quantum wells.Comment: 5 pages, 5 figure
Testing Asteroseismic Radii of Dwarfs and Subgiants with Kepler and Gaia
We test asteroseismic radii of Kepler main-sequence and subgiant stars by
deriving their parallaxes which are compared with those of the first Gaia data
release. We compute radii based on the asteroseismic scaling relations as well
as by fitting observed oscillation frequencies to stellar models for a subset
of the sample, and test the impact of using effective temperatures from either
spectroscopy or the infrared flux method. An offset of 3%, showing no
dependency on any stellar parameters, is found between seismic parallaxes
derived from frequency modelling and those from Gaia. For parallaxes based on
radii from the scaling relations, a smaller offset is found on average;
however, the offset becomes temperature dependent which we interpret as
problems with the scaling relations at high stellar temperatures. Using the
hotter infrared flux method temperature scale, there is no indication that
radii from the scaling relations are inaccurate by more than about 5%. Taking
the radii and masses from the modelling of individual frequencies as reference
values, we seek to correct the scaling relations for the observed temperature
trend. This analysis indicates that the scaling relations systematically
overestimate radii and masses at high temperatures, and that they are accurate
to within 5% in radius and 13% in mass for main-sequence stars with
temperatures below 6400 K. However, further analysis is required to test the
validity of the corrections on a star-by-star basis and for more evolved stars.Comment: 12 pages, 9 figures. Accepted for publication in MNRA
Development of Aluminum LEKIDs for Balloon-Borne Far-IR Spectroscopy
We are developing lumped-element kinetic inductance detectors (LEKIDs)
designed to achieve background-limited sensitivity for far-infrared (FIR)
spectroscopy on a stratospheric balloon. The Spectroscopic Terahertz Airborne
Receiver for Far-InfraRed Exploration (STARFIRE) will study the evolution of
dusty galaxies with observations of the [CII] 158 m and other atomic
fine-structure transitions at , both through direct observations of
individual luminous infrared galaxies, and in blind surveys using the technique
of line intensity mapping. The spectrometer will require large format
(1800 detectors) arrays of dual-polarization sensitive detectors with
NEPs of W Hz. The low-volume LEKIDs are fabricated
with a single layer of aluminum (20 nm thick) deposited on a crystalline
silicon wafer, with resonance frequencies of MHz. The inductor is a
single meander with a linewidth of 0.4 m, patterned in a grid to absorb
optical power in both polarizations. The meander is coupled to a circular
waveguide, fed by a conical feedhorn. Initial testing of a small array
prototype has demonstrated good yield, and a median NEP of
W Hz.Comment: accepted for publication in Journal of Low Temperature Physic
LIN-42, the Caenorhabditis elegans PERIOD homolog, Negatively Regulates MicroRNA Transcription
During C. elegans development, microRNAs (miRNAs) function as molecular switches that define temporal gene expression and cell lineage patterns in a dosage-dependent manner. It is critical, therefore, that the expression of miRNAs be tightly regulated so that target mRNA expression is properly controlled. The molecular mechanisms that function to optimize or control miRNA levels during development are unknown. Here we find that mutations in lin-42, the C. elegans homolog of the circadian-related period gene, suppress multiple dosage-dependent miRNA phenotypes including those involved in developmental timing and neuronal cell fate determination. Analysis of mature miRNA levels in lin-42 mutants indicates that lin-42 functions to attenuate miRNA expression. Through the analysis of transcriptional reporters, we show that the upstream cis-acting regulatory regions of several miRNA genes are sufficient to promote highly dynamic transcription that is coupled to the molting cycles of post-embryonic development. Immunoprecipitation of LIN-42 complexes indicates that LIN-42 binds the putative cis-regulatory regions of both non-coding and protein-coding genes and likely plays a role in regulating their transcription. Consistent with this hypothesis, analysis of miRNA transcriptional reporters in lin-42 mutants indicates that lin-42 regulates miRNA transcription. Surprisingly, strong loss-of-function mutations in lin-42 do not abolish the oscillatory expression patterns of lin-4 and let-7 transcription but lead to increased expression of these genes. We propose that lin-42 functions to negatively regulate the transcriptional output of multiple miRNAs and mRNAs and therefore coordinates the expression levels of genes that dictate temporal cell fate with other regulatory programs that promote rhythmic gene expression
First Observational Tests of Eternal Inflation: Analysis Methods and WMAP 7-Year Results
In the picture of eternal inflation, our observable universe resides inside a
single bubble nucleated from an inflating false vacuum. Many of the theories
giving rise to eternal inflation predict that we have causal access to
collisions with other bubble universes, providing an opportunity to confront
these theories with observation. We present the results from the first
observational search for the effects of bubble collisions, using cosmic
microwave background data from the WMAP satellite. Our search targets a generic
set of properties associated with a bubble collision spacetime, which we
describe in detail. We use a modular algorithm that is designed to avoid a
posteriori selection effects, automatically picking out the most promising
signals, performing a search for causal boundaries, and conducting a full
Bayesian parameter estimation and model selection analysis. We outline each
component of this algorithm, describing its response to simulated CMB skies
with and without bubble collisions. Comparing the results for simulated bubble
collisions to the results from an analysis of the WMAP 7-year data, we rule out
bubble collisions over a range of parameter space. Our model selection results
based on WMAP 7-year data do not warrant augmenting LCDM with bubble
collisions. Data from the Planck satellite can be used to more definitively
test the bubble collision hypothesis.Comment: Companion to arXiv:1012.1995. 41 pages, 23 figures. v2: replaced with
version accepted by PRD. Significant extensions to the Bayesian pipeline to
do the full-sky non-Gaussian source detection problem (previously restricted
to patches). Note that this has changed the normalization of evidence values
reported previously, as full-sky priors are now employed, but the conclusions
remain unchange
The shape of jamming arches in two-dimensional deposits of granular materials
We present experimental results on the shape of arches that block the outlet
of a two dimensional silo. For a range of outlet sizes, we measure some
properties of the arches such as the number of particles involved, the span,
the aspect ratio, and the angles between mutually stabilizing particles. These
measurements shed light on the role of frictional tangential forces in arching.
In addition, we find that arches tend to adopt an aspect ratio (the quotient
between height and half the span) close to one, suggesting an isotropic load.
The comparison of the experimental results with data from numerical models of
the arches formed in the bulk of a granular column reveals the similarities of
both, as well as some limitations in the few existing models.Comment: 8 pages; submitted to Physical Review
- …