877 research outputs found

    Climate drives rhizosphere microbiome variation and divergent selection between geographically distant Arabidopsis populations

    Get PDF
    Disentangling the contribution of climatic and edaphic factors to microbiome variation and local adaptation in plants requires an experimental approach to uncouple their effects and test for causality. We used microbial inocula, soil matrices and plant genotypes derived from two natural Arabidopsis thaliana populations in northern and southern Europe in an experiment conducted in climatic chambers mimicking seasonal changes in temperature, day length and light intensity of the home sites of the two genotypes. The southern A. thaliana genotype outperformed the northern genotype in the southern climate chamber, whereas the opposite was true in the northern climate chamber. Recipient soil matrix, but not microbial composition, affected plant fitness, and effects did not differ between genotypes. Differences between chambers significantly affected rhizosphere microbiome assembly, although these effects were small in comparison with the shifts induced by physicochemical differences between soil matrices. The results suggest that differences in seasonal changes in temperature, day length and light intensity between northern and southern Europe have strongly influenced adaptive differentiation between the two A. thaliana populations, whereas effects of differences in soil factors have been weak. By contrast, below-ground differences in soil characteristics were more important than differences in climate for rhizosphere microbiome differentiation

    Vegetation Type and Decomposition Priming Mediate Brackish Marsh Carbon Accumulation Under Interacting Facets of Global Change

    Get PDF
    Coastal wetland carbon pools are globally important, but their response to interacting facets of global change remain unclear. Numerical models neglect species-specific vegetation responses to sea level rise (SLR) and elevated CO2 (eCO2) that are observed in field experiments, while field experiments cannot address the long-term feedbacks between flooding and soil growth that models show are important. Here, we present a novel numerical model of marsh carbon accumulation parameterized with empirical observations from a long-running eCO2 experiment in an organic rich, brackish marsh. Model results indicate that eCO2 and SLR interact synergistically to increase soil carbon burial, driven by shifts in plant community composition and soil volume expansion. However, newly parameterized interactions between plant biomass and decomposition (i.e. soil priming) reduce the impact of eCO2 on marsh survival, and by inference, the impact of eCO2 on soil carbon accumulation

    Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China

    Get PDF
    Understanding how concentrations of elements and their stoichiometry change with plant growth and age is critical for predicting plant community responses to environmental change. Weusedlong-term field experiments to explore how the leaf, stem and root carbon (C), nitrogen (N) and phosphorous (P) concentrations and their stoichiometry changed with growth and stand age in a L.principis-rupprechtii Mayr. plantation from 2012–2015 in the Qinling Mountains, China. Our results showed that the C, N and P concentrations and stoichiometric ratios in different tissues of larch stands were affected by stand age, organ type andsampling month and displayed multiple correlations with increased stand age in different growing seasons. Generally, leaf C and N concentrations were greatest in the fast-growing season, but leaf P concentrations were greatest in the early growing season. However, no clear seasonal tendencies in the stem and root C, N and P concentrations were observed with growth. In contrast to N and P, few differences were found in organ-specific C concentrations. Leaf N:P was greatest in the fast-growing season, while C:N and C:P were greatest in the late-growing season. No clear variations were observed in stem and root C:N, C:P andN:Pthroughout the entire growing season, but leaf N:P was less than 14, suggesting that the growth of larch stands was limited by N in our study region. Compared to global plant element concentrations and stoichiometry, the leaves of larch stands had higher C, P, C:NandC:PbutlowerNandN:P,andtherootshadgreater PandC:NbutlowerN,C:Pand N:P. Our study provides baseline information for describing the changes in nutritional elements with plant growth, which will facilitates plantation forest management and restoration, and makes avaluable contribution to the global data pool on leaf nutrition and stoichiometry

    Scaling Analysis of Magnetic Filed Tuned Phase Transitions in One-Dimensional Josephson Junction Arrays

    Full text link
    We have studied experimentally the magnetic field-induced superconductor-insulator quantum phase transition in one-dimensional arrays of small Josephson junctions. The zero bias resistance was found to display a drastic change upon application of a small magnetic field; this result was analyzed in context of the superfluid-insulator transition in one dimension. A scaling analysis suggests a power law dependence of the correlation length instead of an exponential one. The dynamical exponents zz were determined to be close to 1, and the correlation length critical exponents were also found to be about 0.3 and 0.6 in the two groups of measured samples.Comment: 4 pages, 4 figure

    RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on <i>Streptomyces coelicolor</i>

    Get PDF
    RAVEN is a commonly used MATLAB toolbox for genome-scale metabolic model (GEM) reconstruction, curation and constraint-based modelling and simulation. Here we present RAVEN Toolbox 2.0 with major enhancements, including: (i) de novo reconstruction of GEMs based on the MetaCyc pathway database; (ii) a redesigned KEGG-based reconstruction pipeline; (iii) convergence of reconstructions from various sources; (iv) improved performance, usability, and compatibility with the COBRA Toolbox. Capabilities of RAVEN 2.0 are here illustrated through de novo reconstruction of GEMs for the antibiotic-producing bacterium Streptomyces coelicolor. Comparison of the automated de novo reconstructions with the iMK1208 model, a previously published high-quality S. coelicolor GEM, exemplifies that RAVEN 2.0 can capture most of the manually curated model. The generated de novo reconstruction is subsequently used to curate iMK1208 resulting in Sco4, the most comprehensive GEM of S. coelicolor, with increased coverage of both primary and secondary metabolism. This increased coverage allows the use of Sco4 to predict novel genome editing targets for optimized secondary metabolites production. As such, we demonstrate that RAVEN 2.0 can be used not only for de novo GEM reconstruction, but also for curating existing models based on up-to-date databases. Both RAVEN 2.0 and Sco4 are distributed through GitHub to facilitate usage and further development by the community (https://github.com/SysBioChalmers/RAVEN and https://github.com/SysBioChalmers/Streptomyces_coelicolor-GEM)

    Developmental changes in mesenteric artery reactivity in embryonic and newly hatched chicks

    Get PDF
    At birth, the intestine becomes the sole site for nutrient absorption requiring a dramatic increase in blood flow. The vascular changes accompanying this transition have been partly characterized in mammals. We investigated, using wire myography, the developmental changes in chick mesenteric artery (MA) reactivity. Rings of the MA from 15-day (E15) and 19-day (E19) chicken embryos (total incubation 21 days) as well as non-fed 0–3-h-old (NH3h) and first-fed 1-day-old (NH1d) newly hatched chicks contracted in response to KCl, norepinephrine (NE), U46619, and endothelin (ET)-1 and relaxed in response to acetylcholine (ACh), sodium nitroprusside (SNP), and forskolin indicating the presence of electro- and pharmaco-mechanical coupling as well as cGMP- and cAMP-mediated relaxation. In ovo development and transition to ex ovo life was accompanied by alterations in the response of the MAs, but a different developmental trajectory was observed for each reactivity pathway tested. Thus, the contractile efficacy of KCl underwent a linear increase (E15 < E19 < NH3h < NH1d). The efficacy of NE and U46619 increased in ovo, but not ex ovo (E15 < E19 = NH3h = NH1d) and the efficacy of ET-1 peaked at E19 (E15 < E19 > NH3h = NH1d). The relaxations elicited by ACh (endothelium-dependent), SNP, and forskolin did not undergo significant developmental changes. In conclusion, the ability of chick MAs to constrict in response to pharmacological stimuli increases during the embryonic period, but no dramatic changes are induced by hatching or the first feeding. Maturation of vasodilator mechanisms precedes that of vasoconstrictor mechanisms. Alterations of the delicate balance between vasoconstrictors and vasodilators may play an important role in perinatal intestinal diseases

    Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to changes in vegetation nitrogen concentration

    Get PDF
    We ran the terrestrial ecosystem model (TEM) for the globe at 0.5° resolution for atmospheric CO2 concentrations of 340 and 680 parts per million by volume (ppmv) to evaluate global and regional responses of net primary production (NPP) and carbon storage to elevated CO2 for their sensitivity to changes in vegetation nitrogen concentration. At 340 ppmv, TEM estimated global NPP of 49.0 1015 g (Pg) C yr−1 and global total carbon storage of 1701.8 Pg C; the estimate of total carbon storage does not include the carbon content of inert soil organic matter. For the reference simulation in which doubled atmospheric CO2 was accompanied with no change in vegetation nitrogen concentration, global NPP increased 4.1 Pg C yr−1 (8.3%), and global total carbon storage increased 114.2 Pg C. To examine sensitivity in the global responses of NPP and carbon storage to decreases in the nitrogen concentration of vegetation, we compared doubled CO2 responses of the reference TEM to simulations in which the vegetation nitrogen concentration was reduced without influencing decomposition dynamics (“lower N” simulations) and to simulations in which reductions in vegetation nitrogen concentration influence decomposition dynamics (“lower N+D” simulations). We conducted three lower N simulations and three lower N+D simulations in which we reduced the nitrogen concentration of vegetation by 7.5, 15.0, and 22.5%. In the lower N simulations, the response of global NPP to doubled atmospheric CO2 increased approximately 2 Pg C yr−1 for each incremental 7.5% reduction in vegetation nitrogen concentration, and vegetation carbon increased approximately an additional 40 Pg C, and soil carbon increased an additional 30 Pg C, for a total carbon storage increase of approximately 70 Pg C. In the lower N+D simulations, the responses of NPP and vegetation carbon storage were relatively insensitive to differences in the reduction of nitrogen concentration, but soil carbon storage showed a large change. The insensitivity of NPP in the N+D simulations occurred because potential enhancements in NPP associated with reduced vegetation nitrogen concentration were approximately offset by lower nitrogen availability associated with the decomposition dynamics of reduced litter nitrogen concentration. For each 7.5% reduction in vegetation nitrogen concentration, soil carbon increased approximately an additional 60 Pg C, while vegetation carbon storage increased by only approximately 5 Pg C. As the reduction in vegetation nitrogen concentration gets greater in the lower N+D simulations, more of the additional carbon storage tends to become concentrated in the north temperate-boreal region in comparison to the tropics. Other studies with TEM show that elevated CO2 more than offsets the effects of climate change to cause increased carbon storage. The results of this study indicate that carbon storage would be enhanced by the influence of changes in plant nitrogen concentration on carbon assimilation and decomposition rates. Thus changes in vegetation nitrogen concentration may have important implications for the ability of the terrestrial biosphere to mitigate increases in the atmospheric concentration of CO2 and climate changes associated with the increases
    • 

    corecore