163 research outputs found

    A new frictional time integration algorithm for large slip multi-body frictional contact problems

    Get PDF
    In this paper a new frictional time integration algorithm suitable for large slip multibody frictional contact problems is presented. The algorithm is introduced within the simple context of a model problem: the sliding motion of a particle onto a rough surface. Time integration of frictional traction is performed introducing a new slip path parametrization, which is defined independently traction is performed introducing element parametrization used in the spatial triangularization. The key point of the algorithm is that now, in presence of large slips, problems associated with slip motions such that a full incremental slip path is not within a single surface element, are completed bypassed. Remarkably, the algorithm is defined on the solely basis of the unit outward normal field to the surface without any appeal to the underlying local surface finite element triangularization. Geometrically, the assumed slip path can be viewed as an approximation to the geodesic passing throughout the initial and final points of each incremental slip path. The algorithm is amenable to exact linearization and asymptotic quadratic rate of convergence can be achieved within a Newton-Raphson iterative solution scheme. The algorithm can easily be extended to large slip multi-body frictional contact problems, involving finite strains. &nbsp

    A new frictional time integration algorithm for large slip multi-body frictional contact problems

    Get PDF
    In this paper a new frictional time integration algorithm suitable for large slip multibody frictional contact problems is presented. The algorithm is introduced within the simple context of a model problem: the sliding motion of a particle onto a rough surface. Time integration of frictional traction is performed introducing a new slip path parametrization, which is defined independently traction is performed introducing element parametrization used in the spatial triangularization. The key point of the algorithm is that now, in presence of large slips, problems associated with slip motions such that a full incremental slip path is not within a single surface element, are completed bypassed. Remarkably, the algorithm is defined on the solely basis of the unit outward normal field to the surface without any appeal to the underlying local surface finite element triangularization. Geometrically, the assumed slip path can be viewed as an approximation to the geodesic passing throughout the initial and final points of each incremental slip path. The algorithm is amenable to exact linearization and asymptotic quadratic rate of convergence can be achieved within a Newton-Raphson iterative solution scheme. The algorithm can easily be extended to large slip multi-body frictional contact problems, involving finite strains. &nbsp

    Numerical analysis of coupled thermomechanical frictional contact problems. Computational model and applications

    Get PDF
    In this paper a numerical model for the analysis of coupled thermomechanical multi-body frictional contact problems at finite deformations is presented. The multi-body frictional contact formulation is fully developed on the continuum setting and then a spatial (Galerkin projection) and temporal (time-stepping algorithm) discretization is applied. A contact pressure and temperature dependent thermal contact model has been used. A fractional step method arising from an operator split of the governing equations has been used to solve the coupled nonlinear system of equations, leading to a staggered solution algorithm. The numerical model has been implemented into an enhanced version of the computational finite element program FEAP. Numerical examples and simulation of industrial metal forming processes show the performance of the numerical model in the analysis of coupled thermomechanical frictional contact problems

    Challenges to be tackled in the computational modeling and numerical simulation of FSW processes

    Get PDF
    The computational modeling and numerical simulation of Friction Stir Welding (FSW) processes is an extremely challenging task due to the highly nonlinear and coupled nature of the physical problem and the complex computational issues that need to be properly tackled in the numerical model

    A direct elimination algorithm for quasi-static and dynamic contact problems

    Get PDF
    This paper deals with the computational modeling and numerical simulation of contact problems at Unite deformations using the Finite element method. Quasi-static and dynamic problems are considered and two particular frictional conditions, full stick friction and frictionless cases, are addressed. Lagrange multipliers and regularized formulations of the contact problem, such as penalty or augmented Lagrangian methods, are avoided and a new direct elimination method is proposed. Conserving algorithms are also introduced for the proposed formulation for dynamic contact problems. An assessment of he performance of the resulting formulation is shown in a number of selected benchmark tests and numerical examples, including both quasi-static and dynamic contact problems under full stick friction and frictionless contact conditions. Conservation of key discrete properties exhibited by the time stepping algorithm used for dynamic contact problems is also shown in an example. (C) 2014 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author’s final draft

    Les conductes d'un metge de la Vall de Boí, al segle XVIII

    Get PDF

    On the numerical modeling of frictional wear phenomena

    Get PDF
    The evolution of the contact surfaces wear may become particularly important in the definition of the frictional behavior, in particular for frictional contact problems involving large slips, typically in sheet metal forming and bulk forming operations. Despite this fact, most of the current applications reported in the literature are restricted to a standard Coulomb law, using a constant friction coefficient. Such simple models may represent only a limited range of tribological situations and it appears to be necessary to develop a class of models which incorporate the state conditions and their evolution at the contact surfaces, taking into account the influence of complex phenomena such as wear, lubrication and chemical reactions, among others, see Oden and Martins [1]. In this paper a simple numerical model for the simulation of frictional wear behavior, within a fully nonlinear setting, including large slip and finite deformation, is presented. The model relies on the introduction of an internal variable related to the state conditions at the contact surface. Here, two possible definitions of this internal variable have been considered. The fully nonlinear frictional contact formulation, entirely derived first on a continuum setting by Laursen and Simo [2–6], has been extended here to accomodate the characterization of the wear frictional behavior. Within the computational aspects, two families of robust time stepping algorithms, arising from an operator split of the constrained frictional evolution equations, are discussed. Finally, following current approaches, see Lassen [9], Lassen and Bay [10], Owen et al. [11], de Souza et al. [12], Stromberg et al. [13] and Stromberg [14], a long-term tools wear prediction is given by introducing an a priori wear estimate derived from Archard's law, Archard [15]. The numerical model has been implemented into a enhanced version of the computational finite element program FEAP. Numerical examples show the suitability of the proposed model to capture the essential features of the frictional behavior at the contact interfaces and to provide a prediction of tool wear in forming operations

    Conserving algorithms for frictionless and full stick friction contact dynamic problems using the direct elimination method

    Get PDF
    In this paper, conserving time‐stepping algorithms for frictionless and full stick friction dynamic contact problems are presented. Time integration algorithms for frictionless and full stick friction dynamic contact problems have been designed to preserve the conservation of key discrete properties satisfied at the continuum level. Energy and energy‐momentum–preserving algorithms for frictionless and full stick friction dynamic contact problems, respectively, have been designed and implemented within the framework of the direct elimination method, avoiding the drawbacks linked to the use of penalty‐based or Lagrange multipliers methods. An assessment of the performance of the resulting formulation is shown in a number of selected and representative numerical examples, under full stick friction and slip frictionless contact conditions. Conservation of key discrete properties exhibited by the time‐stepping algorithm is shown

    Constitutive modeling and numerical analysis of thermo-mechanical phase-change systems

    Get PDF
    The  main objective of the research presented in this work is the formulation, analysis and implementation of efficient numerical algorithms for dissipate dynamical systems in solids mechanics. The dissipate structure exhibited by the systems considered is described in detail for the coupled thermoviscoplastic problem including phase change phenomena and extended to the frictional thermomechanical contact problem
    corecore