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The main objective of the research presented in this work is the formulation,
analysis and implementation of efficient numerical algorithms for dissipative
dynamical systems in solid mechanics. The dissipative structure exhibited
by the systems considered is described in detail for the coupled thermovis-
coplastic problem including phase change phenomena and extended to the
frictional thermomechanical contact problem.

The goal of this initial chapter is to motivate the methodology used in
this investigation. A short review of the literature for the problem under
consideration is also included, along with a number of issues that were open
in the initial stage of this research. This chapter concludes with an overview
of the topics treated in this dissertation.

1.1 Motivations and Goals

The numerical simulation of coupled thermo-mechanical solidification processes

has been one of the research topics of great interest over the last years. Also,
during the last decade, growing interest on this and related topics has been
shown by many industrial companies, such as automotive and aeronauti-
cal, motivated by the need to get high quality final products and to reduce
manufacturing costs. However, and despite the enormous progress achieved
lately in the computational mechanics, the large scale numerical simulation of
these problems continues to be nowadays a very complex task. This is mainly
due to the highly nonlinear nature of the problem, usually involving nonlin-

ear constitutive behavior, liquid-solid, solid-solid phase changes, nonlinear

11
11



12 INTRODUCTION

thermal and mechanical boundary conditions, frictional contact interaction
and complex coupled thermo-mechanical phenomena Hence, an important
motivation behind the research presemeu in this dissertation is to present
a possible formulation of the coupled problem consistently derived within
a thermodynamic framework followed by a detailed description of its time
integration and space discretization. The result is an eflicient solution via
large-scale numerical simulations of industrial solidification processes arising
in the context of solid mechanics.

This work focuses on dissipative dynamical systems such as coupled ther-
moplastic and frictional thermomechanical contact problems. The numerical
solution of these systems requires integration strategies in time, referred to
as time-stepping algorithms. The notion of dissipativity is due to a decay in
time of the energy of the system. This notion is closely related to that of nu-
merical stability appropriate for this class of problems [Armero & Simo-93].
A large number of different concepts of stability can be found in the nu-
merical analysis literature. The intuitive idea underlying all these concepts
can be briefly described as a sort of control in the possible growth of the
computed solution due to the numerical errors that inevitably appear in the
approximate numerical solution of the problem [Armero & Simo-93]. Given
the practical importance of this property, efficiency of an implicit numerical
scheme necessarily involves unconditional stability, that is the possibility of
achieving stability with independence of the time step. The formulation of
unconditionally stable algorithms to solve thermomechanical frictional con-
tact problems including phase change phenomena is so the main goal of this
work.

1.1.1 Numerical solution of coupled problems

The solution of coupled problems considered consists of an up-to-date finite
element numerical model for fully coupled thermomechanical systems, fo-

cusing in the simulation of sohdlﬁcatlon processes of industrial metal parts.
The formulation of the governing equations is consistently derived within a

thermodyvnamic context The proposed constitutive model Anfinad Ty o
VLLTL LIV Y LAG LG AAJLLUG AV A LG pPIUPUOUU VAULIDvuun Ve mode: 18 gennea lJy (<]

thermo-viscoelastic-viscoplastic free energy function which includes a contri-
bution for multiphase changes. The continuous transition between the initial
fluid-like and the final solid-like behavior of the part is modelled by consid-

511115 separate deviatoric viscous and t!ldbbupld.hl-lb TESpOnses as a funetion of
the solid fraction. Viscous behavior is based on the Norton law characteristic
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of viscous fluids. A particular J2-thermo-viscoplastic algorithm with tem-
perature dependent mechanical and thermal properties has been developed.
Nonlinear kinematic and isotropic hardening due to plastic deformation and

thermal softening of the yield stress due to the temperature evolution is as-

sumed. Multiphase change contribution is taken intc account assuming both
thF ]ﬂfp'ﬂf heat relesse and the strainine eferte diring nhace Ahanoas

he latent heat release and the straining effects during phase changes.

Fractional step methods arising from an operator split of the governing
differential equations are considered. Isentropic and isothermal splits are
introduced and their nonlinear stability issues is discussed. A key point of
the formulation of either the isentropic or the isothermal splits is the set up
of the additional design constraints defining the numerical solution strategy.
These additional constraints motivate the definition of a set of variables and
nonlinear operators introduced in the present formulation. Within the time
discrete setting, the additive operator splits lead to a product formula algo-
rithms and to a staggered solution scheme of the coupled problem. Finally,
the time discrete variational formulations of the coupled problem, using ei-
ther the isentropic or the isothermal splits are introduced.

1.1.2 Numerical solution of frictional contact problems

The treatment of contact problems using finite elements is currently a re-
search topic of substantial interest. Application of the developing technol-
ogy include the areas of metal forming, crashworthiness, bulking response of
structures, study and prevention of wear, among others. In many (if not all)
of these fields, friction plays a noticeable role at the contact interface.

"The formulation for the finite element treatment of multibody, large de-
formation frictional contact problems is presented. The general approach
used consists in developing the governing equations in the continuum setting
first, before deriving the corresponding finite element equations. In par-
ticular, this procedure yields a characterization of the frictional constraint
(assuming a generalized Coulomb law) suitable for arbitrary discretization.
Of particular interest will be the use of a-priori stability estimotes to guide
the development of integrators for the frictional evolution equations so that
unconditionally stable staggered algorithms for thermomechanical frictional
problem can be defined.

A phenomenological model for frictional contact accounting for wear ef-
Jects is also proposed. The goal is the generalization of the Coulomb law to

\JuuuUHDU uu,w v

account for a non lnear fmctzon coeﬁ?czent assumed to be a function of the
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frictional dissipation, in a theory analogous to classical hardening plasticity.
Finally, within the computational scheme, a robust algorithm based on the

operator Spllli method \EJ.B.SH(, preuu,b()l - frictional bllulﬁg COTTECHOr) ) is used
for the numerical integration of the frictional constitutive equations.

1.2 Overview

The work concentrates on the formulation and integration of the coupled
thermomechanical problem including the phase change contribution and the
frictional contact interaction at the contact interface. This first part is fol-
lowed by a number of numerical simulation assessing the theoretical results
previously obtained.

Chapter-2 defines the coupled thermomechanical problem in solid me-
chanics. The local governing equations are introduced first (section-2.1).
The dissipative structure behind these equations is identified, leading to the
formulation of an a-priori stability estimates that play a key role in the time
integration schemes presented in chapter-4. The constitutive equations fol-
lows by applying Coleman’s method to the dissipation inequality defined
by the rate of the free energy function introduced to describe the thermo-
viscoelastic-viscoplastic behavior (section-2.2). In section 2.3 the evolution
laws for the internal variables are obtained by applying the principle of max-
imum internal dissipation. The equivalent forms of the energy equation are
presented in section 2.4 and finally, the weak form of the governing equations
is presented in section 2.5.

Chapter-§ deals with the formulation of the contact problem. Section
3.1 introduces the notation and the problem definition. Follow the governing
equations defined taking into account the energy and momentum balance at
the contact interface (section 3.2) . The constitutive equations and the evo-

lution law are obtained by the definition of a frictional contact free energy

alC OLLaliiCQ LAC QCIIILILIOQL OL & LI20LI0LaL LOULALL 1160 Cllct

function and by the principle of maximum frictional dissipation, in section
3.4 and 3.5, respectively. The wear phenomena is explained in section 3.7.

Tiurin of the
Extension of the a-priori stability estimate to the contact interface is pre-

sented in section 3.9 and finally, in section 3.10 the contact contribution to
the weak form is given.

Chapter-4 introduces the time integration of the coupled problem. A
brief review of the possible time-stepping schemes is presented in section
4.1. The fractional step method and the resulting product formula of the
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governing equations of the coupled problem is described in section 4.2. In
section 4.3 the time discrete variational formulation is presented for both the
isentropic and the isothermal splits. The time-integration of the constitutive
equations in case of both the isentropic and isothermal algorithms is shown
in section 4.4. Section 4.5 deals with the time integration of the phase change
contribution.

Chapter-5 defines the time integration of the contact problem. Section 5.1
describes the local evolution problem while in section 5.2 both the isentropic
and the isothermal operator splits are defined. The time-discrete contribution
to the weak form of the contact problem is presented in section 5.3. Finally,
the isentropic and the isothermal algorithms are given in section 5.4 and 5.5,
respectively.

Chapter-6 deals with the space discretization of the coupled thermome-
chanical problem including the contribution at the contact interface. The
Galerkin projection of the variational equations is presented in section 6.1.
Section 6.2. describes the mixed approximation known as b-bar projection
method used in the discretization of the momentum balance equation. Fi-
nally, this chapter concludes with some integration rules specifications.

Chapter-7 shows a number of numerical simulation assessing the theoret-
ical results obtained in the previous chapters.

Chapter-8 includes some concluding remarks summarizing the major re-
sults obtained in this work. Suggestion for future research are also presented.
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Chapter 2

Problem

This chapter deals with the formulation of the coupled thermo-mechanical
problem, Coupled problems arise frequently in engineering applications. As
defined by Zienkiewicz & Taylor [Zienkiewicz-91]: ” coupled systems and for-
mulations are those applicable to multiple domains and dependent variabies
which describe different physical phenomena and in which neither domain
can be solved while separated form the other, and neither set of dependent
variables can be eliminated at the differential equations level”.

The formulation of the model has been consistently derived within a ther-
modynamic framework.

The constitutive behavior has been defined by a thermoplastic free en-
ergy function, including a thermal multi-phase change contribution. Plastic
response has been modeled considering a J2 thermo-viscoplastic temperature
dependent constitutive model, including plastic hardening and thermal soft-

ening. Liquid-like behavior has been modeled by a purely viscous model and
a smooth transition to the gsolid-like model has heen acenmead

SO LI AR WO AT oLUURE INOACL N1aS DECI asS5UIned.

The weak form of the balance equations that governs the coupled problem
is presented.

2.1 Local governing equations

laeal avre

The 10Cau 3YS stem o

mechanical proble

arti erential equations governing the coupled thermo-
is ﬁned by the momentum and energy balance equa-

=N
S g
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18 FORMULATION OF THE COUPLED PROBLEM

tions, restricted by the inequalities arising from the second law of thermody-
namics. This system will be supplemented by suitable constitutive equations.
Additionally one must supply prescribed houndary and initial conditions

Qailloflally Olle IHUSL SUPP pAoeliDOl DOLLICALY allQ LNblal COIUILIONS.

2.1.1 General form of the local balance laws

Let © € R¥™ be the set with smooth boundary 89 of a continuum body 3
in the space dimension R%™, Let [0, T| be the time interval of interest.

The local form of the belance of momentum equation also known as
Cauchy’s equation of motion [Malvern-69] ,[Truesdell-65] is given by

V. a+b_p,,d,‘,’ (2.1)

where o is the Cauchy stress tensor, V - (o) is the reference divergence op-
erator, b is the vector of forces per unit of volume, p, is the density in the
reference configuration and v is the velocity field.
The balonce of energy equation can be written as
E=0c:e -V -Q+R {2.2)
so that the increase of the internal energy F per unit of volume consists of
three parts: the stress power o : & which represents the mechanical work done

4+ Tind
by the external forces not converted into kinetic energy, the heat supplied by

the internal sources per unit of volume R, and the term —V - Q which is the
heat provided by the flow of thermal energy through the boundary into the

auatam Tha halanna of anarewr amqt thin Tmnnnd P £ a1 Tt

D) OUTLLLL 1 UG alaliLe UL TLICIEY CK{LLQ/IJJ.UJ.J. ].D hll.C lU\.-d.vl 1O 100 LIEe TT780 La:w U[
Thermodynamics [Truesdell-65].

The Second law of Thermodynamics limits the direction of the energy
transformations and it postulates that there exists a state function called
entropy S so that

2
AS=82—512/ dQ (2.3)
1 ©

where d@ is the heat input during the process, © > 0 the absolute tem-
perature and indices 1 and 2 denote the starting and ending points of a

thermodynamic process. From equation (2.3) it is seen that the change in
entropy of the system for any process can never be negative. It is zero for a

I a

reversible process if there is no heat inflow to the system and positive for an
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irreversible process [Truesdell-65], [Malvern-69], [Khan & Huang-95]. Taking
into account that the heat input into the system is given by

dQ = RdV — Q-ndS (2.4)

i/swz Eazv—f Qn g (2.5)
a0 0

where S is now the entropy per unit of volume. This relation is the so
called Clausius-Duhem inequality [Truesdell-65), [Khan & Huang-95]. Using
the divergence theorem

dt/SdV /—dV v (%) av (2.6)

Since the choice of volume §2 is mb;tx&r‘_y', the fOHG‘v‘v’ii’lg local form of the
Clausius-Duhem inequality is derived as
V- (Q) (2.7)
\o) '

To covert this inequality into an equation, it is possible to introduce
a thermomechanical variable D > 0 usually referred as thermomechanical
dissipation, so that

—~
]
[0.9]

~——

Observe that the positiveness of the dissipation term resumes the second
law of thermodynamics, in fact, the relation D > 0 defines the direction
allowed in a thermomechanical transformation, so that in case of reversible
process D) = 0, while in case of an irreversible process the dissipation will be
strictly positive D > 0.

A stronger format for the previous equation (2.8) is given by the following
relations

Dy = OS—R+V-Q2>0 (2.9a)
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where D;,; and D, g are the internal dissipation and the dissipation by con-
duction, respectively. Equation (2.9a) is known in the literature [Truesdell-65]

oa o Mogiadeia Dlamb amatsnm  Talriing infn seronnt tha halanes Af anpros

a8 Ot widUSTUS- L wGmin cquuwuw J.cuuus l.lll/U cuuuuuuu IJI.J.U MOLALILT UL C.‘LJ.'V}.EJ'
equation (2.2} the following format for the Clausius-Plank equation is also
available
™ Pa¥al 7“! — Lo~ N £y 1M
Dim=00—0o+0:e >0 (2.10)
Thus, the first order system of local equations that govern the coupled
thermo-mechanical problem is the following

u = v (2.11a)
pv = V-o+b (2.11Db)
95 R_Y.Q+D, (9 11a)

I V o\ T Liint \4.11C)

restricted by the inequalities arising from the second law of thermodynam-
ics

D = Dy Dcond >0 (212&)
Dwy = OS—E+o0:£2>0 (2.12b)
Dcond = _QTVG) >0 (212C)

2.1.2 Additive decomposition

Figure (2.1) shows the rheological model considered for the mechanical be-
havior. Let’s assume an additive decomposition of the total strain tensor
into its elastic and inelastic parts ¥ and e, respectively, that is

e=e"+¢' (2.13)
where the elastic strain tensor €% is given by the sum of the effective elastic
deformation plus the thermal deformation, e¢ and €? , respectively, so that

ef =¢*+¢f (2.14)

while the inelastic strain tensor involves the viscoelastic and viscoplastic
effects

el =¥ &% (2.15)
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Figure 2.1: Thermo-mechanical rheological model

Another hypothesis is the split of total entropy S into its elastic and
inelastic part, ST and S7, respectively, as

§=8%+ 5! (2.16)

It is now possible to write in a new format the energy equation (2.9a)
using the elastic entropy S¥ as the state variable

05% = R— V- Q+Dmeen (2.17a)

where the decomposition of the internal dissipation D;, into mechanical and
thermal part, Dpecn and D, respectively, is assumed

Dint = Dmech + Dthe’r > 0 (218)
so that the thermal dissipation results in
Diper = 057 (2.19)

Taking care of previous assumptions, the first order system of local equa-
tions that governs the coupled thermo-mechanical problem is the following
[Armero-Thesis-93), [Complas-97], [Alaska-97)

W= v (2.20a)
V.-o+b (2.20b)

DoV

05F = R—V.Q+Dpeen (2.20c)
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restricted by the following inequalities

D = Dueoh + Diher + Deona 2 0 (221&)
Duech = OS5 —E+a:6 20 (2.21D)
Diper = 08! (2.21c)
Dcand = —'g'g—e > 0 (221(1)

u=1u on 8, % [0,7]
c-n=t on O x[0,7]
©=6 on 806 x[0,T] (2.22)

Q-n=gq, on 8% x[0,T]
and the initial conditions
u=u, in Qx[

v=v, in Q2x{0 (2.23)
©6=0, in Qx|

2.1.3 A-priori stability estimate

The central issue in the analysis of algorithms for coupled problems concerns
the appropriate notion of nonlinear stability. The goal of this section is
to describe the dissipative structure behind the thermo-mechanical problem
[Armero & Simo-93].

Let L (u,v,0) be a functional given hy

L{u,v,0) = /

(E -0,87 + épﬂ) AV + Vg (u) (2.24)
Q

where V,;; (u) is the potential energy function associated to the external
mechanical loads

d.. .. { o f -
— Ve (1) = — v-bdV — v-tdS 2.25
dt +(w) jn a0 (2:25)

If we assume that no external heat sources are present, i.e., E = 0, and
that the thermal boundary conditions (2.22) are such that

(8,—-0)Q - n=0 on 2 x[0,T] (2.26)
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then the a-priori stability estimate provides that [Armero-Thesis-93]

\( in
8)<0 in x[0,T] (2.27)

Ly

so that the nonlinear stability is ensured if L (u,v,0) is a non-increasing
Lyapunov-like function along the flow generated by the thermo-plastic prob-
lem [Coleman & Dill-73], [Armero-Thesis-93].

The rate of change of L (u,v,0) along the dynamics generated by the
coupled problem is computed as

L (0, v,0) = f(E—@aSEerov-v) dV—/v-de—f v -tds
dt o

Q a0
(2.28)
If we remember the relation existing between the traction vector t and
the Cauchy stress tensor &, that is T = o - n then the last term in equation
(2.28) can be developed as

LQV-tdS = Lﬂv-(mn)dé‘:/nv.(v_a) AV

f f
jv-(V-a)dV—i—j Vvie dV=-- (229
0 Q

and taking into account that the gradient of the velocity field is equal to the
rate of strain tensor & , that is Vv = &, then it is possible to follow developing
the above equation as

7 ' — . 2N T
_‘/VKV O'UJV""/ \G . &) av
Q Q

—~
©
(o)
<o

Rt

Substituting (2.30) within equation (2.28) then

4 v, = /'v-(poo-v-a—b) av
dt o

b
o
[usary

<
—
——

If we take into account equations (2.20b) and (2.21b) then it results

C%L(u,v,@) = /; [(@ —,) §F -~ Dmech] dv (2.32)
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Making use of equation (2.20c) and using Green’s formula along with the
thermal boundary conditions then

%L (u,v,®) = — fn [Dmech+ (6 ;)e,,) (V-Q—Dmech)} dy2.33)
= ~f[(8) v (557) o

_[an (e 990) Q:nds (234

- _ fﬂ (%2) [Dmh— &@'Q] v (2.35)

RPN g

Taking into account the expression of the dissipation by conduction (2.21d),
we finally obtain

d 9,

d_L (u,v,0) / Dipeer, + Doona) dV <0 (2.36)
This condition is regarded as a fundamental a-priori estimate for the

thermo-viscoplastic evolution problem which must be preserved by the time-

stepping algorithm [Armero & Simo-92], [Armero-Thesis-93], [Armero & Simo-

92].

2.2 C

In thermodynamics the internal energy E, entropy S and the Cauchy stress

3 Ta nd R S DR N o | 1.~
tensor o are all considered state functions that can be determined by the

state variables. The formulas that relate the state functions to the state
variables are called stote equations or constituiive equations.

2.2.1 Coleman’s method
In case of thermo-elasticity one can expect that the state variables would be
the stain tensor € and the temperature field © since the state function S and
o are determined completely by the their current values. Thus, for an ideal
thermo-elastic behavior

,S’ =

o

q
0
@



The situation becomes much more complex if inelastic deformations can
occur. For example, stresses of a plastically deformed body cannot be de-
termined by the current value of the deformation € only. The history of
the deformation is also necessary so that simple constitutive equation, such
as (2.37b), cannot describe correctly the plastic deformation of solids. s
and & are assumed to be state functions, we face two fundamental problems.
First, we have to find or specify the set of the state variables that uniquely
define the current state. Second, the mathematical forms of the constitutive
equations should be determined after the state variables are chosen. This
involves the experimental evaluation and the mathernatical formalization.

To solve the problem of specifying state variables, two different methods
are usually adopted. The first method ignores the problem of state variables
and assume that .S and & are determined by the histories of £ and ©, and not
by their current values only [Coleman-64]. Therefore these quantities should
be expressed as the functionals, not functions, of £ and ©. The second
method introduces the concept of internal variables [Coleman-67]. In this
method it is postulated that the current state of an inelastically deformed
solid can be determined by the current values of € and © as well as a set
of internal variables. The history of the deformation is indirectly included
in the evolution of these internal variables. Since the state functions can be
expressed by

S = S(E,EI,CEI,(")) (2.38a)
o = a(e,el,al,@) (2.38b)

where e is the inelastic strain tensor and o is a set of generic internal
variable that defines the material behavior. The specific meaning for each
internal variable and the actual number need to be chosen and identified
for different materials and different conditions. Different choices result in
different constitutive models.

Taking into account the additive decomposition of the strain tensor (2.13),
usually the state functions are defined in term of the elastic deformation
ef = £ — £/, and considering equation (2.21b) it is possible to replace the
total entropy with the elastic entropy as the primary variable to define the
energy equation, so that the choice of the state functions and state variable
that define the coupled problem when inelastic deformation can occur results
in

SE = §B(e-¢la,0)=5%(",a,0) (2.39a)
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o = o{e—¢',a/,0)=0(c"al,0) (2.39b)
In what follows Coleman’s method is used to obtain the constitutive equa-
tions that characterize the material behavior. Let ¥ (e, af,©) be the

Helmbholtz free energy function (per unit reference volume) obtained from
the internal energy E (5%, &%, o) by the Legendre transform

¥=F-05F (2.40)
so that its rate is _ o _
U=F-0S8%-085¥ (2.41)
and using equation (2.21b) we can also write
V=0:6-05%— Dpeen (2.42)

If we differentiate the free energy function with respect to the state vari-
ables we cobtain

ov
¥ = —— & — a8+ -0
OeF dal + o0
R ov ,, 98V ; 0.
= ) &' &+ —0 2.43
gef T ger “Vgal % Te (243)
From equations (2.42) and (2.43) it is possible to obtain the following in-

equality
Dingen = (a—a—q’) L é— (S‘E + —) O+ &l >0
debf € o
{2.44)
Applying Coleman’s method [Coleman-64], we obtain the definition of the
constitutive equations as

2 (ef,a,6)
o = 5 (2.45a)
- oY (ef al, 6
00
where the internal dissipation is given by
Dmech =T éI‘FﬁI . dI 2 0 (246)
being for definition
80 (7, !, ©)
I _ 3 1
B = el (2.47)
Equation (2.46) is known in the literature as the reduced equaiion of dis-

sipation.
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2.2.2 Definition of the free energy function

We have seen how it is possible to formulate and obtain the constitutive
equation that govern the thermo-mechanical problem starting from the defi-
nition of the potential ¥ (¢Z,®, a’). A possible choice of the set of internal
variables to particularize the free energy function to the case of thermo-
viscoplastic behavior is given by ef = [£,¢], that is the isotropic and kine-
matic hardening variables, respectively. Thus, a possible format of the free

energy function ¥ = ¥ (7,0, (,£) is given as the sum of following contri-
butions

U=0("0,08)=W({E")+M(EZ,0)+T(©)+K((£,0) (248)
where W (F‘E ﬂ\ M (/:-E ﬂ\z T (ﬂ) and K(f;,{: 0\ are the elastic stored en-
ergy, the couphng potentlal the thermal potential a.nd the plastic hardening
potential, respectively [Agelet-97], [Alaska-97], [Buenos-Aires-98], [SanDiego-
98], [Cancun-99]. The expressions chosen here for these terms are the follow-

ino
mg

W (,0) = %k(@) ( ) 3(0) dev? (¢F) (2.492)
M{ef,0) = —k(©) ¢ 01 (2.49b)
T@®) = - / D e(j O"(g@) (2.49¢)

K(G60) = [m(©) - oo 0] [¢ - 1= 00)]
3 H (0) 843K (0) ICIP (2.49)

where k (©) is the bulk modulus, a (@) the thermal volumetric-change coef-
ficient, ©, the initial temperature field, C, (©) the heat capacity at constant
volume (without including the phase change contribution), o, () the initial
flow stress, oo, (O) the saturation hardening limit, H (©) the linear isotropic
hardening coefficient, K (©) the linear kinematic hardening coefficient and
finally 1 =é;;e; ® e; the rank-two symmetric unit tensor.

A modified shear modulus G (©) is considered to remove the deviatoric
elastic potential in the liquid-like phase. This modified shear modulus takes
the form

G(O) = Ji‘(g)) (2.50)
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where G (0) is the standard temperature dependent shear modulus and
fs(©) represents the solid-fraction function.

(g POSSEUN R e A U SRS W, PRSI TS I J -,
1

TIN €° \U) 15 tne VUlLlIIlEhlll, b[lelludl Uﬁ OrT

e (8) =3[ (©) (8 — Ores) — @ (6,) (€5 — Orey)] (2.51)

R B I Py S <
1aL1OI1 14 1L 1s deHIIed as

where the reference temperature ©,.; is the environment temperature during
the experimental evaluation of the dilatation coefficient a (©).
This given, the constitutive equations that govern the coupled problem

result in

r = 2 LT (2BY 28 (N1 L9 (BN don (2 (9 59a)
o DeE  CATIWAE) T & T LT S (D) GEUAE jla.02a)
pu G (9)
SF = ——=] ~—2do — We — Mg — Ko (2.52h)
a e, ©
being
Txr _ 11 L 27 BN oA 7 2 /(Y ISW-ON
We =— 5!(7@ tro{e”) + Godev” (e7) (2.53)
Mo — -3{a(8)k(8)+[aek () +a(O)ke] (@ Orey)
—2(0,) ke (Qp — Orep)} tr (€F) (2.54)
i—exp(—68)]
Ko = (Uoo,@ _0'0,@) \‘f p\ J
g e Lo e / y
rpfies e ie s \ J

where (o), represents the derivative of the argument with respect to the
temperature field.

If we define the volumetric ela

tic strain as

e® =tr (%) — ¢’ (©) (2.56)

then the definition of the stress tensor results in

o = pl+s (2.57a)
p = k(©)e° {(2.57h)

l / Sl
s = 2G(0) dev(e) (2.57c)
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where p = } tr (o) and s = dev () are the pressure and the deviator of the
stress tensor, respectively.

manrhaniasl diccin an

The mechanical uinbip"uOu i
Dmch=a:é”+a:éu”+qé+q:ézo (2.58)

where the state variables ¢ and q are defined as the derivatives of the free
energy function with respect to £ and {, respectively, so that

g = _3_‘1’ =—K, (2.592a)
a& S hY '
ov 2
where
Ke =000 (8) — 0, (8)] [l — exp (—68)] + H{(©) £ (2.60)

Finally, let’s introduce in this section the Fourier's law as the constitutive
law that governs the heat flux, so that

O

Q=-k(O)VE

k(@ (2.61)
where k (0)=k (0) 1 is the conductivity tensor. Note that due to the re-
striction on the dissipation by conduction (2.21d) it results

vO

'n)
Doona = —% >0 = k(©)>0 (2.62)

Remark 1 In case of constant heat capacity coefficient the thermal potential
T (©) can be expressed by

T(0)=C, [(@ _8,) -6l (g)}

therefore, the definition of the elastic entropy changes in

S¥ 0% =C,1 Wo — Mo — K
= n —_ _
36 k@ ) ) ) e
Remark 2 Due to the fact that usually the material properties are input as
piece-wise functions then the second derivatives are assumed to be zero ond

only the first derivatives are taken into account.
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2.2.3 Phase Change Contributions

In this section the formulation of the coupled problem is extended to take
into account the phase chance contribution. Two are the main effects that
we want to consider: the latent heat release and the straining during the
phase changes.

Latent heat release

The latent heat release can be defined as the nroduct between the total

=20 2GR LlGay Iitdst Cadl 00 GOIHIISH as uile produly WwOUll wiic yoLal

amount of latent heat L and a particular function fs(©) that controls the
heat flow during the phase change process, so that

L(©)=Lfs(®) (2.64)

L(©) is the so called latent heat function [Celentano-94]. In case of a
single phase change fg(©) represents the solid-fraction function so that the
latent heat will be released (or absorbed) depending on the fraction of solid
existing in the considered volume. This function takes the form

0 if 0 >0,
fe(@) =X 0<fs(®) <1 if Q<O <Oy (2.65)
1 if 6 < 0Og

where ©f and ©g are the liquid and solid temperature, respectively.
If we assume the more general case of multi-phase-changes then the latent
heat function can be written as

NPC

L©)=>3 LY (e) (2.66)

L1
=1

where L(*) are the different amounts of latent heat to be released during the
NP(T nhaqP (‘hﬂnﬂ'PQ HT\F] fl( ) (O\ are f}\ﬂ QQQ(\(‘V‘H‘F(:' nhncﬂ ﬁ‘ar\hnn 'FIIY]I’"‘H"\Y‘IQ

1UCWIOIES,

To account for this contrlbutlon, the definition of the free energy function
must be modified adding a new term ¥7¢ (@) related to the rate of latent heat
released during the phase change, so that

¥ (€7,0,¢,8) = ¥ (7,0,,8) + 97 (0) (2.67)
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Figure 2.2: Latent heat function

where ¥ (E:E , 0, C,é) carresponds to the previous definition of the free energy
function without including the phase change contribution while ¥7¢ (8) can
be assumed in the integral form as

e 8
TP (@) = —f o [ Lege (2.68)
° =M

where Lg = dL/dO .

As a consequence of this assumption the definition of the elastic entropy
must be modified. so that

LLDOICL, B0 bilab

(2.69)

= 76T 50

go_ 0¥ _ (axp awe)
55"

so that it is possible to identify two different contributions to the elastic
entropy function, respectively given by

8w @CU é .

gF — _%Z/DQdQ_WO_M@—K@ (2.70a)
A qpe rer. .

pe _ T O a8

S 55 j 5 d6 (2.70b)
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Thus, the total entropy function is now given by the sum of following
contributions

S = SF+S5T+5 (2.71a)
or
5§ = 5%+ 8 (2.71b)

Observing that it is verified the following equation
057 =L (2.72)

that relates the rate of latent heat released to the rate of entropy associated
to the phase change contribution, then the balance of energy law accounting
for the phase change contribution can be enforced in the equivalent form by
the following system of equations

08% = R—V-Q+Dmeon — L (2.73a)
058" = Diper (2.73h)
es* = L (2.73¢c)
or alternatively by
B
08 = R—V Q+Dnoer (2.74a)
85" = Diper (2.74b)

Straining during phase change

The straining during phase change is a particular volumetric contraction or
dilatation that occurs when the material is changing its internal structure

(see figure (2.3)). Its direct consequence is the modification of the volumet-
ric thermal deformation a ((‘ﬂ to accountg for this effect. Usine the same

L0 vAaciiilgl QOLOLIIQLI0OLL QllOullLe 100 Lills CLUULL. Vollllp WiC Salllc

notation presented in the above section, the evolution law of the straining
term can be defined as [Celentano-94],

NPC
AV®
.pe _ (k) 3
0= Y. 27 1) (2.75)
k=1 e
where V,, is the volume at the initial temperature and AV®) the total volume

change observed for the &** phase change.
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Figure 2.3: Thermal deformation including straining contribution

This given, the volumetric thermal deformation results in the following
expression

e’ @) = 3 [a (@) (©- GTE)‘) —a(6,)(9, - ®ref)]
+[€(©) — e (8,)] (2.76)

where it is possible to observe that the evolution law (2.75) has been in-
tegrated between the initial and the current temperature field, ©, and ©,
respectively [Buenos-Aires-98].

Note that, due to the new definition of the volumetric thermal deforma-
tion, the evaluation of elastic entropy S¥ must change according to the new
value of term Mg that depends on the derivative of ¢f with respect to ©.

2.3 Evolution laws

The formulation of the coupled thermo-mechanical model is completed by

R, T

specilying the evolution equations of the inelastic quantities previously in-
troduced.
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2.3.1 Introduction

The basic idea is to try to formulate a model the closest as possible to the ex-

perimental observatlon. The main difficulty is the very different behavior of
the liquid phase compared with the solid phase. The liquid phase is charac-

terized bv a purelv viscous behavior so that both the elastic and the nlastic

CLiZoX Ry @ pulCly 4SS CLIAVIDL SO LLRL DLW WS CAASLAC Al UL pRasual

deformation must be neglected. On the other hand, when the material is
solid a standard elastic-viscoplastic behavior should be taken into account.

In the literature there are different models to simulate the liquid-like
behavior LBeHet—%J, [y Oi‘tlﬁ—ouh luelenta,no—mj Tn the fqu'v‘uﬁg section two
classical models are introduced.

Modified shear modulus model [Celentano-94). Let ©y and ©g be the
liquid and the solid phase change temperature, respectively. The idea consists
of reducing to zero the deviatoric part of the stress tensor s =dev (o) in the
liquid phase. This is obtained assuming a modified shear modulus G (@)
depending on the fraction of solid fg (©), in the following form

G@©)=¢ 0<fs(8)G(Bs) <G (0s) if Bs<O <O (2.77)
\ G(0) if 0 < B¢

In the hypothesis of an elasto-plastic constitutive model the stress tensor
is so computed as

= pl+8
k() ¢ (2.78)
2G (0) dev (e — eP) = fs () s

wm s Q
Il

This model is very easy to implement, in fact it requires only the eval-
nation nof the ealid_fraction fimction fo (A o modifv the valiie of the chant

LA LIV ULl o SULASLUIGUnUL duiCuil j 50 b0 UGy LS Vaalt U1 o onlal

modulus in the liquid-like phase. On the other hand it must be noted that
the deformation occurred during the liquid phase or in the mushy zone is
elastic and not inelastic (irreversible). In fact, when the temperature drops
to the solid limit ©¢ the shear modulus recovers its value and in the hypoth-
esis of an hyperelastic constitutive model, the stresses due to the deviatoric
deformation are recovered and not dissipated through a viscous process.
Degenerated visco-plastic model. In this case the main idea is to use a
standard viscoplastic model reducing the radius of the von Mises cylinder
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R{g,©) according to the solid-fraction function fs (8}, that is

( 0 if >0,
R(g,0)=1¢ 0<f5(0) R(¢,05) < R(q,0) if ©5<© <Oy (2.79)
R(q,©) if ©<0og

Note that if © > ©p, the viscoplastic potential ® (s,q,©) associated to the
viscoplastic model degenerate in a purely-viscous potential

@ (s,g) = llsll - R(3,8) — s (2.80)

The evolution of the plastic multiplier transforms into

1 1

Es 1
7= (2(s)) v == [s] (2.81)

i 'f?

50 that
AUp s 1 . £ oa
EP =9n=-s (2.82)
n

Therefore, it is possible to cbtain a purely viscous relation between the de-
viator of the stress tensor s and the rate of visco-plastic strain &7, governed

by the viscous parameter n
§ =n&*? (2.83)

In this case if the value of the viscous parameter 7 is enough small compared
with the shear modulus G, then the total deformation will be essentially
visco-plastic, to say irreversible. The result is a model much more close to
the experimental observation. The only disadvantage is that at the end of
the analysis it is impossible to distinguish between the viscoplastic and the
viscous deformations produced in the liquid phase because the model use
always the same variable £ during all the solidification process.

In this work the constitutive model is formulated assuming both viscous

and viscoplastic deformations. The associated evolution laws are obtained

accommodating the principle of maximum dissipation to the case of a thermo-
viscoelastic-viscoplastic potential.

2.3.2 Principle of maximum dissipation

In the fundamental work of Mandel ﬂ\/[cmrln] 7‘)1 the vield

it £
A yiTduL \,J-IUCJ.J.UJ.l lUl Un)'

sociative plasticity is postulated using the classical isothermal version of
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the principle of mazmimum plastic dissipation of von Mises. Simo & Miehe
[Simo & Miehe-92] observe that temperature effects are ignored in Mandel’s
work and remove this restriction by appealing to & thermomechanical ex-
tension of this classical principle. In this work the principle of maximum
dissipation has been extended to the thermo-viscoelastic-viscoplastic case.

Let us consider the generalized stress tensor £ =s,q,q] and the gener-
alized inelastic strain tensor Ef = [¢7, (€] where s =deu (o) is the deviator
of the stress tensor, ¢ and g are the conjugate variables of ¢ and £ dealing
with the kinematic and isotropic hardening, respectively.

Let us assume a generic thermo-visco-elastic and thermo-visco-plastic po-
tentials, A (T,9) and ® (X, ©), respectively, and let us consider the thermo-
mechanical dissipation D;,: given by

Dint = Dmech + Dther =X EI + ("')SI 2 0 (284)

Let T and ¥ be the generic stress and temperature fields and consider
the following dissipation functional

L(T"q '")=—Dznt(T°)+

sV ff

,\
X
Q0
[}

p—

where 1/7 > 0 is a penalty parameter associated to the functional L.
Function Z (T,¥) must be monotone and must satisfy the conditions

(L)) = ZE(TW)>0

= (T,0) = { . (2.86)

A possible assumption proposed in this work is to consider

Z(T) = A (9) l (AT9)* + 1 (T,9) L (@ (T, )"+ (2.87)
Z n+1

where coefficients A (9) and pu(T,) are given by

A@) = 1-fs() = fr(9) (2.882)

w1 = g0 Gy (2:85)

being fs (¥} and fr () the solid and the liquid fraction function.
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Thus, the optimally conditions for this unconstrained minimization prob-
lem are

0 L(T,9,n)

=0 2.89
0T |pg (2.8%)
a9 9=6 N (2:89b)

80 that the visco-elasto-plastic flow rule results in the following relations

G %% (2.90a)
: 192(2
o _ % _6{5)_@,6) (2.90D)
that is
o %8:(8,82,4:9) (2.91a)
¢ = L1EEG0) (2.91b)
= rr] aq )
- %8:(s(,9¢q1,q,9) (2.91¢)
g _ %é‘i(sa,g),ﬂ (2.91d)

Due to the definition of potential = (32,8), it is possible to develop the
above expressions to separate the contributions coming from the visco-elastic
and visco-plastic potentials, A (s) and © (2,0), respectively, in the following
additive form

, oA 9d

g = o s + pg (2.92a)
. vp@_gfg

¢ = 9 3q (2.92b)
¢ = «/”Pg—f (2.92¢)
. JOA 8D
ST = 2617 P'éé (2.92d)
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where the visco-elastic and the visco-plastic multipliers, 4* and "7, are re-
spectively defined as

v = 2 ame) -1 wme) (2.93%)
o = N(i,@) <@(2,@)>”:% @(Z,0)"  (293b)

being 7¥ and 1*? the viscous parameters associated to the visco-elastic and

visco-plastic processes, respectively.

It is so possible to identify the first and the second term of equation
(2.92a) with the evolution laws of the visco-elastic and visco-plastic strain
t

2l amd 2UD maomy

€nsors €° alna €77, Lcoyebtlvcl_,

g’ = ”(3—: =4"m (2.94a)
» 0P
sop vp
£ ~+'P - (2.94b)
where vectors n and m are given by
A .
o2 2.95h
n = - (2.95h)

Observe that the evolution law of the visco-elastic strain tensor €* only
depends on the definition of the visco-elastic potential A (s) while the evo-
lution law of the visco-plastic tensor € depends the specified visco-plastic
potential & (X,0).

In analogous way, the inelastic entropy can be splitted in two terms,
respectively given by

Sm — _\r,vaA(zag) (2.963\
ae ’
. 9% (x,0)
vp AP >
s T —7s (2.96b)

so that

S =5+ 8§
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where S is associated to the visco-elastic potential, and S*? to the visco-
plastic one.

+ha + 1 14 ] e hahiaaias 3o A ) Spres |
Thﬂo, when the material is LGuia, ivs behavior is described b oy a visco-

elastic potential while when it is solid it is defined by a standard visco-plastic
potential. These limit cases are resumed in the following table

If ©>0, then E(X%,0)= %( (Z,0)2 o =g (2.97)
If ©<Og then EZ(, e) L@Eeont - =egr 7

It is also very interesting to observe that, due to the previous definition
of coeflicients A (©) and p (X, ©), during both the liquid-like and the solid
phases as well as in the mushy-phase, the equivalent viscosity of the model
7°? is given by the parameter 7. input as a material property of the model.
In fact, in the mushy zone if ® (£,0) > 0 it results

1 _ i, L
neq .,71; ,q'up
AB 2,6 1
_ MO p(ze) 1 258)
n U 1
as well as in the limit cases
s (C:))z' " } — A ) =1 —-n=n (2.99)
®(x,8) <0 ) p(Z8)=0
Js (a(j)n)d: ' ¥ — A(©) =0 —n=n (2.100)
e Ay p(E,0)= '
®(%,0)>0 )
2.3.3 Definition of the purely viscous model
The specialization of the viscous potential A (s) accouitt for a purely vis-

cous behavior to simulate the liquid-like phase ca be given by the following
simple assumption

A

-,
—~
1]
o
EZ

(2.101)
The resulting evolution law for the viscous strain tensor is obtained ap-
plying equation (2.94a), so that

. OA (s)
E‘U = ,-),l/ aés) — ,_Y'Um (2102)
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being
m = — (2.103a)
I
A28
» = 228y (2.103b)
Recovering the definition of 7* the evolution law can be rewritten as
1
E'=—s 2.104
p (2.104)

that is the Norton’s law of a purely viscous material.
Finally, in the next table the range of values assumed by the viscous
parameter n* is presented

0206 — ' =1
Qs <O < @L — ',7” = /\(; @) (2105)
0 < Oy — 7" = oo

2.3.4 A J2-flow thermo-viscoplastic model

In this section the specialization of function @ (s,q,q,©) to deal with von
Mises yield criterion with an isotropic and kinematic hardening combined
with a thermal softening effect is presented.

Von Mises yield surface is assumed in the form

$(5,0,4,©) =|ls —ql| — R(g,©) <0 (2.106)
where R (g, ©) is the radius of the yield surface given by
2
R(g,0)= \/; (00 (©) — q] (2.107)

and oy (©) is the flow stress.
According to equation (77) the evolution laws for the plastic variables are
given by

LD wp 0% (S) q.9, 6) Py

& = AT — = =7"n (2.108a)
¢ = v””—a@(séz’q’e) =—7"n (2.108b)
.o vaq"E(S,q,q,@) _up /2_

= s oy \/5 (2.108¢)
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-

where n is the unit normal to the yield surface and 4" is the viscoplastic
parameter, respectively given by

s—q J¢)
= —_—= 2.109
S ey VT (2.10%)
yr = F (@(z,0)" (2.109b)

being the viscoplastic parameter n*? given by

n'P — _n— 2110
T uEe) (2.110)

In the next table the range of values assumed by the viscoplastic para-
meter 7j*F is presented

8> 06, — 7P =00
— P — 4
O <O <Oy i (20 .
O < Og 1 (2.111)
PR | AU .

smeo )

Observe that in case of decreasing values of the viscous parameter 7,

in the limit 7 — 0 ane recovers the rate indenandent nlastie formulation
I T0e IS 7] * U OIS IeCOVerS il rave IMGEPENGENnt p:asile Iormuaaiion,

that is the Kuhn-Tuker conditions and the consistency requirement must be
satisfied

¥P >0 (2.112a)
®(s,q,q) < 0 (2.112b)
PO (s,q,9) = 0 (2.112¢)
¥P & (s,q,0) = 0 (2.1124d)

2.3.5 Mechanical dissipation

Taking into account that the mechanical dissipation Diecr, = X - EI >0
plays an important rule in the reduced equation of dissipation (2.17a} then
it can be interesting to infroduce in this section an useful expression to
compute this term. For this reason let us split the mechanical dissipation
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into viscous and plastic dissipation named D.;,, and D, respectively, so
that

Drech = Duisc + Dplus >0 (2113)

where
Dysc = 8:€"20 (2.114)
Dyos = T-E7 >0 (2.115)

Taking into account the expressions given for the evolution law ( 2.108a,
2.108b, 2.108c ) and (2.102) it is possible to write

2

Due=7"sim=7"lsl =7°A() =r* (") (2116)
and
2 2
Dpla.s = ﬁ?'vp (S - q) : n+’}’vp '\/;q = ',YUP (”S - Q_" + \/—;QN
V3 \ V3 /
2
= A" [q) (2,0)+ \/;00 (@)-’
L v ]
2
N (nvp,yvp)% 4P \/;Uo (©) (2.117a)
so that

2
Drecr, = [v"A(s) +¥P2 (X, 0)] ++7 ‘v/;"ﬂ (©)
1 2
= () 7 (PP T \/;00 (©) >0 (2.118a)

2.3.6 Thermal dissipation

Thermal dissipation Dyye, = 087 > 0 can be computed using equations
(2.96a, 2.96b) particularized for the models previously introduced, as

. dA(E,8)
Sm = v~ 177 - .
T 0 (2.119a)
o 0 ®(%,0) 2d oo ()
P — (2 AN Y e R s
S g V3. (2.119b)
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so that
Diper = =" \/zdgd‘j( Jo >0 (2.120)
This result and the inequality Dier 2> Okiea.d to the restriction
20 () (2.121)
de

that is, only thermal softening is allowed.

2.4 Equivalent forms of the energy equation

In this section two alternative forms of the energy equation (2.9a) are intro-
duced. This equivalent equations are obtained as follows.

2.4.1 Entropy form

The entropy form of the balance of energy equation is given by

08 =R- V- Q+Dy, (2.122)

Taking into account the additive decomposition of the entropy function
(2.71a) and the phase change contribution (2.72) it is also possible to consider
the following equivalent system of equations

esE = R—V Q+Dmech — L (2 1233’)
85 = Diper (2.123b)
es* = L (2.123c)

showing the local evolution of the different contributions of the entropy func-
tion.

Another possible format can be the following (see [Agelet-97], [Alaska-97])

B
0S5 = R-V Q+Duen (2.1244)
88" = Diper (2.124b)
where in this case the phase change contribution is included into the definition
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2.4.2 Temperature form

Applying the chain rule to the elastic entropy function then it results
08F = Cs0 + HP (2.125)
thus, equation (2.123a) can be written as
CO=R—V-Q+Dpeer — L~ H® (2.126)

where the following notation has been introduced

C = 6?9 =Cy— 8 (Wee + Moe + Koo) (2.127a)
8% ase oo aq ; }
ep  _ . &E -E
H 0|50 ¢+ 5] -0 LS‘@ S2E| (21270)

being C' the heat capacity (not including the phase change contribution) and
H*®? the structural elasto-plastic heating [Armero-Thesis-93].

Due to the fact that the latent heat function L only depends on the
temperature field, it is also possible to write the balance of energy equation
(2.126) as

C6&=R-V QiDmear — H? (2.128)
where C is given by
Pa¥az i Ed
A 85~ dL
C=0—=0C+—-— 2.129
00 de ( )

that is the heat capacity including the phase change contribution [Agelet-97),
[Alaska-97].

Given the practical physical significance of the temperature in front of the
entropy, an efficient numerical analysis of the coupled problem considers the

£11
temperature as an independent variable together with the displacement field

[Armero & Simo- 91], [Armero & Simo-92], [Armero-Thesis-93]. For this rea-
son, most of the algorithms found in the literature for the thermo-mechanical
coupled problem are based on the temperature form of the energy equation.
The analysis presented in this work will show the important role played by
the entropy form, even with the temperature as independent variable.
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2.5 Weak Form of the Governing Equations

In this section the wealk form of both the balance of momentum and hal

a
A (9201734 AU OX INICHICHLQIIL df il

S
o
(4]

of energy equations are presented. A mixed variational formulation to deal
with eit; h er the volume-preserving plastic flow or the viscous behavior is also
formulated.

2.5.1 Weak form of the balance of momentum equation

Tt O e j1id

eprondionan A
LTV e DT LLILVCEL ALIULL

w itk crnath hanndariae A0 PNV N oot
omain with smooth boundaries 802, Let a7} e the test

function associated to the displacement field u. The wealk form of the balance
of momentum equation (2.1) in the hypothesis of a quasi-static process results
in

{6n,V - o) + {6, by =0 (2.130)

where b is the vector of forces per unit of volume.
Applying the divergence theorem to the first term in the above equation
yields

Lo

(n,V o) = —(V(6m),0) + {6m, Vg (2.131)

where t = o - n is the prescribed surface traction. Substituting into (2.130)
the result is
(Ve (6m),0) = {6n,b) + (61,t) 50, (2.132)

that is the standard format of the weak form of the balance of momentum
equation.

2.5.2 Mixed Variational Formulation
This section is concerned with the treatment of volume constraints arising

either from the assumption of incompressible or nearly incompressible elas-
1’1(‘ Y‘FQT\OI’IQP or FT‘()TT‘I ﬂ"IP hvnothesis of assuming vn]nmn._n'r‘nﬂnrvlncr nlastic

Line, LI 1O LIS LAY POUICEE UL aosllllllly VOIUIIX PAUSULViE pidouie

flow. The mlxed formulation [Simo-85] that will be presented it is also very
interesting to deal with the numerical locking problems generated by the dif-

AL AR AnFinm memnaca
ferent stiffness that the material assumes during the solidification process,

i.e. when the part is in a liquid-like phase while the mould is solid. In the
context of elasticity, problems arising from the numerical treatment of the
incompressibﬂity constraint are well known and have received considerable

attention in the bUlllpubd;blUllad literature lualt:y & Oden- OOJ The method of

Lagrangian multipliers, the penalty function method [Hughes-79], or iterative
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updating schemes based upon the use of augmented Lagrangian [Fortin-82]
are approaches currently followed. In the next section a mixed procedure is
proposed, based on perturbed Lagrangian formulation in which pressure and
associated volume-preserving deformation are regarded as independent field
variables.

Additive split of the strain tensor

In the context of linearized theory, the point of departure is the introduction

P T P e - e N e T Tt daiatario

x 3 ]
01 u0e aaqitive UCLOULLTPUBILIULL [9)3 bJLU Dblalll WGLIDUL & U.ll/U llJD ubVJ.a.l;Ule ana

spherical parts

1
e =Viu =;e”°l1 +e (2.133)
where
e — i (E ={r (vsu) =V -u (2134&)
e = dev(g) =den(V°u) (2.134b)

being u the displacement fleld, and 1 =d;;e; ® e; the rank-two symmetric
unit tensor (that is the metric tensor in the Cartesian coordinate system).

Now, suppose to consider the spherical part of the strain tensor as an
additional independent variable field 6 so that

E=Vu= e+%6 1 (2.135)
3]
If we introduce the projection operators as
ol | N
o= Z1el (2.136a)
| N 5 L (2.136b)

where I =3 L [8ibs + 8ubj) € ® e; ® e, @ e; is the rank-four symmetric unit
tensor, and taking into account that the following relations are also verified

T = Il pde (2.137)

and
e =g =g (2.138a)
rH? = (2.138b)

(1) = 1% (2.138c)
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then it is possible to write

1
;
"™ . e =-?;t'r (V°u)1 (2.139a)

1o (2,139
I g =dev(V*u) (2.139b)

Finally, let the elastic response be characterized by a stored energy func-
tion of the form

W (g) =W (e,6) (2.140)

then the stress tensor is given by

]

W (8)

T = 2.
T °E (2.141)
and the tangent elasticities result in
2_ -
C= an_Lﬂ(f) (2.142)
JedE

Variational principle

Let 2 C R" denote the reference configuration of the body with smooth
boundary 0. Let u(x) be the displacement field, which is prescribed as
¥ (x) on 8Q, and T (x) = o - n the traction vector specified on 89, so that
90 = 90, U 88, and 80, N OQ, = 0.

Consider the following perturbed Lagrangian functional

L(u,p,6) = /QW () dV + /;p [tr () — 6] AV + 11 (u) (2.143)

where p is the pressure and II(u) is the total potential energy associated

i ading +hod o
with the loadi 18, TOay IS

II(u)=— [b-udV— /

vl J O

tuds (2.144)
2

The functional (2.143)may be viewed as a form of the Hu- Washizu vari-
ational principle [Nagtegaal-T4). Let n € {H' () : nlsn, = 0} be the test
function (virtual displacements) associated with the functional { 2.143) for a
solution (u—w)€H" (), p € L?(2) and @ € L2 (£2). Similarly, for the test



function ¢ and - associated to the variables p and 8, respectively. Consider
the following directional derivatives (variations)

d
DyL(w,p,8)-n = —| L(utan,p,6)=0 VneH' (2.145)
and PP
d
D,L{wp,6)-q = = L{u,ptaq,f) =0  Vqc L*(2.145b)
a=0
nAT /L. ns d S Y T N o T2 A N
D6L(u,p,8)- vy = — L{u,p,f+oy)=0 Vye L*(2.145c)
doc|,_q
that is
(dev (V°n) dev (&) + (div(n),p) -G = 0 (2.1462)
{q, [d’i?i (u) - 4)) 0 (2.146b)
<’y,[ Ptz tr (a)]) =0 (2.146¢)

where G = —D,II(u) - 7 is the virtual work due to the external forces.
Note that taking into account equation (2.146a) equilibrium between the
virtual work of the internal and external forces is recovered, while equations

(O 1ACEY 79 1AGA o ol fasene ~F + £ [E-JUNUINIPN P I
& 130U}, (£.130C) ale bllU WELK JUTTIS UL I:lll.- 1U11UW1115 J.Ul.d;blUllb

2 R KUY U I IR Lr 2

v = @) \L-Laid)
1

p = §tr (&) (2.147H)

2.5.3 Weak form of the energy equation
Let {2 be integration domain with smooth boundaries 9. Let 6 be the test

it naanmintad +n Fha +a P BAld O T ok Ahanan #hn kalaaes ~f
TUnclion O.DDUD-LG'UUU wr IJJ.LC UC&AI]_JCJ.OJUU.LU oliu L/, LU LLILOUDT LIS palalllc UL

energy equation in entropy form given by equation (2.123a) then the weak
form associated results in

<519, 05F + L) = (59, R) — {69,V - Q) + (69, Dinecn) (2.148)
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Integrating by part the conductivity term in the previous equation

(597 Q) = IV{EN VO 1L {58 3
0 ) (V(07),% ] T A%, G

Uy, V

ak form of the energy equation is the following

where § = Q - 1 is the flux normal to the boundaries. Substituting the result
i 14 e i

1€ T Owing

(519, 0%F + L> 1 (V(69),kVO) = G? (2.150)

where G¥ is the thermal work due to the internal sources, the mechanical
dissipation and the prescribed heat fiux, given by

G’ = (69, R) — (519’(1)@0 + {60, Dinecn) (2.151)






Chapter 3

A

Formulation of the Contact
Problem

This chapter has its main focus in the thermo-mechanical coupled contact
problem, and describes a new theoretical framework within a stable time in-
tegration scheme can be developed and understood. The overall approach is
similar to that utilized in the study of thermoplasticity in bulk materials pre-

sented in the preceding chapter, but requires developments of the appropriate
interface kinematics and thermomechanical restrictions to enable new stabil-

ity estimates to be constructed and numerically approximated. The ideas
of the thermodvnamically hased stability estimates have been extended 'Fn'r‘

Ol the LOCITNOGYNallliCany Uastl Suabiiivy Coblilldute Loy DCCIL CXLCNCed 101

the thermomechanical contact problem by developing a new a priori stability
estimate for the fully coupled formulation.

Finally a numerical model for the simulation of frictional wear behav-
ior is developed replacing the constant frictional coefficient in the classical
Coulomb law by a nonlinear function of an internal variable related to the
slip distance.

3.1 Notati

. N on and Problem Definition

In this section the notation used to define the contact problem is introduced
[Laursen & Simo-91]-[Laursen & Simo-93b] and [Agelet-97b]. Moreover the
parametrization of the contact surfaces and the definition of closest-point-
projection will allow the description of the contact constrains.

51
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3.1.1 Notation

Let 2 < ngim < 3 be the space dimension and 7 = [0,7] € R, the time
interval of interest. Let the open sets QY € R™im and Q) ¢ Fram with
smooth boundaries UY and #0® and closures QO = QM U 80D and
Q@ = Q@ U, be the reference placement of two continuum bodies §1)
and B | with material particles labeled X €V and Y €{}®), respectively.

Denote by ¢ : ) x I — R™am the orientation preserving deformation
map of the body ﬁ(*) with material velocities V® = 8, and deformation
gradients F® = Dp®, For each time t € I, the mapping gog) represents a
one-parameter family of configuration indexed hy ¢, whlch maps the reference
placement of body 8% onto its current placement S : (B C Rram,

We will denote as the contact surface T ¢ 9Q® the Dart of the boundary
of the body 8 such that all material points where contact will occur at any
time t € I are 1ncluded The current, placement of the contact surface I is
given by 4@ = i (1®).

Attention wxll be focussed to material points on these surfaces denoted

as X €I and Y €eI®. Current placement of these particles is given by
x =p{! )(X) €+ and y =@ (Y) € v®. See figure (3.1) for an illustration

of the notation to be used.

Figure 3.1: Schematic description of two interacting bodies at reference and
current placements. Reference and current placement of contact surfaces.

Using a standard notation in contact mechanics ([Laursen & Simo-91]-
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[Laursen & Simo-93b] and [Agelet-97b]) we will assign to each pair of contact
surfaces involved in the problem, the roles of slave and master surface. In
particular, let I'® be the slave surfoce and T' be the master surfece. Addi-

tionally, we will denote slave particles and master particles to the material

points of the slave and master surfaces, respectively. With this notation in
hand, we will require that any slave particle may not penetrate the master

narnd S22 RGN LAEL QY Saqve palluillc gy 110y PDElCIalte il IMasuer

surface, at any time ¢ € 7. Although in the continuum setting the slave-
master notation plays no role, in the discrete setting this choice becomes
important.

3.1.2 Parametrization of the contact surfaces

2 R, [RIN IR PURRY SR IS M. TE))
Let A® C Rudim-1 he g parent domain for the contact surface of body B¢,

A parametrization of the contact surface for each body A® is introduced
by a fa.mﬂy of (orientation preserving) one-parameter mappings indexed by
time, ¢ : A C Rraim 3 — Rneim such that TO = ) (A®) and @ =
o (A®). Using the mapping composition rule, it also follows that 1" =
(pgi) o . In what follows, it will be assumed that this parametrization has
the required smoothness conditions.

Within the slave-master surface role, focus will be placed on the para-
metrization of the master surface. Using the parametrization of the contact

surfaces introduced above we consider a point € = (¢%,£2) € A® of the par-
ent domain, such that

Y = 42 (3.1a)
y = %7 (3.1b)
and
E. (&) = ¢2(€) (3.2a)
ea (&) = ¥ (£) (3.2b)

where Y and y are, respectively, the reference and current placement, of a
master particle and E, (£) and e, (£§),a = 1,2 are the convected surface
basis attached to the master particle Y €I'®, on the reference and current
configuration, respectively. Here (-) o denotes partial derivative with respect
to £ . Figure (3.2) shows the parametrization map of reference and current
placement of a contact surface.
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| /// \
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Figure 3.2: Contact surface parametrization. Parametrization map of refer-
ence and current placement of a contact surface.

3.1.3 Closest-point projection and contact pressure

Let § (X,t) € v® be the closest-point projection of the current position of
the slave particle X onto the current placement of the master surface T2,
defined as

7 (X2) =P (¥) (3.3)
where
T (X,t) = arg min [ (X) — o2 ( Y)H (3.4)
Yer@

and let gy (X,t) be the gap function defined for any slave particle X € T' and
for any time t € I as

s YA L

1 oD (Y
gn (X8) { o (X) — o (Y (Y,ﬂ)] v (3.5)
where v €S® is the unit outward normal field to the current placement of the
master surface particularized at the closest-point projection ¥ (X,t) € 4@,
Let o) (X,t) be the Cauchy stress tensor and N (X) the unit outward
normal to the slave surface I'®) in the reference configuration. The nominal
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frictional contact traction at X €I'™ is given by
t0 (X 1) = o (X,t) - N (X) (3.6)

and the contact nominal pressure iy (X,t) is defined as

N (Xt =tD(Xt) v (3.7)

3.1.4 Convected basis, metric and curvature tensors

Associated to the closest-point projection given by (3.3), for some point
E(X )= (El,éz) € A® of the parent domain we will have

Y (X1) P2 (€) (3.82)
(Xt = ¥ (&) (3.8b)

Attached to the master particie Y (X,t) we define the convected surface
basis on the reference and current configurations, respectively, as

Il

fEf X

) = R
Xt
7'a()

= E. (¢
Ty S
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Additiona.lly, the unit outward normal ¢/ € S and v €5 at the mas-
IR, P Y R | N .

LET particie Y \A b) on the reference and cur
can be defined as

ations, respectively,

et P ol o
v - = (3.10a)
| ref X T;Ef
TIXT
y = TAXTa (3.100)
[ 71x 7o

The vectors 77/ (X,t) € TSP and 7, (X,t) € TvS® span the tan-
gent spaces Trer S and TvS™ to the $® unit sphere at v™¢f and v, respec-
tively. Here the tangent space to the S? unit sphere at v €5® is defined
as

TvS® = {fv cRm : fv - v =0} (3.11

tors ref ain ot ad wehih dho
VLD o ana T o augulcuucu WILN uie

~—r

The convected surface bas
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unit outward normal v"¢f an
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rov1d local spatial frames at the master
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particle ¥ (X,t) on the reference and current configurations, respectively.
The convected surface basis vectors o™/ and 7, induces a surface metric or
PR, [, Lomsnenn e P Ariveant Annf et i AafBrad

1Y

cn and airran -
first fundamental form on the reference and curren COLNgUrations, Geiinca

respectively as

Ma{} = Tz;ef.q_'rp"’ef (312&)
Meg = Ta " Tp (3.12b)

Inverse surface metrics M%? and m®® are defined in the usual manner.
Additionally, dual surface basis on the reference and current configurations

are stralghtforward defined respectively as

T8, = M (3.13a)
™ = m*®rg (3.13b)
The variation of the convected surface basis along the convected coordi-

nates, together with the unit normal, induces the second fundamental form or
surface curvature defined, on the reference and current configurations, as

ke = Eop(€) v (3.14a)

eap (&) v (3.14b)

kag

3.1.5 Slip velocity and frictional traction

The relative slip velocities in the convected and current configuration arc
defined as

Vit (X = % [¥ (X.t)] (3.15a)
vr(X,t) = FP(EXp) vid (Xp) (3.15b)
and, applying the chain rule

vl (Xt) = £ et (3.16a)
vr(Xt) = € 7a (3.16b)

The one-forms associated to these objects are defined as
bvi_;ff (Xst) = éa Maﬁ Tfef (317&)
bvp (Xt) = € Mupr? (3.17)
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Finally, we define the nominal frictional tangent traction ty (X,t) as (mi-
nus) the projection of the nominal frictional contact traction t™ (X,t) onto

+ho 11mib anaeen

=1
LG ULy nullllal V as

T (th) = {7 (X,t) To (3.18)

3.2 Governing Equations

In this section the main focus is the formulation and treatment of the contact
problem recovering the same general structure used to describe the consti-
tutive framework for the bulk continua. In particular we will emphatize an
entropy form of the energy equation defined on the contact interface, which
is a key aspect of the isentropic split of the coupled problem first presented
in the previous chapter for the thermoplastic continua. It is this approach
that will be extended in this work to encompass thermo-frictional contact
problems [Laursen-98].

Let us extend the balance equations coming from the first and second laws
of thermodynamics, to account for the contributions at the contact interfaces.

First, let us consider the balance of energy equation. If we denote with
E”* the time derivative of the total internal energy given by

E*:fE’dv+f E.dS (3.19)
Q r(

being E the stored energy per unit volume in the bulk medium (see eq. 2.2)
and E, the stored energy per unit area on the contact interface T defined
as

where g% is the tan

mtegra,tmg within th convect d framework

. f
97 = j & dt (3.21)
te
being t. the initial time of contact for the point in question. le) and ng

are the heat fluxes per unit reference surface I'"™ supplied at the interface,
assumed positive if they are flowing out of the bodies into the interface region.
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Let us now consider the second law of thermodynamics. Suppose also in
this case that the total entropy of the system S* can be given by

9=]SW+ S,ds (3.22)
Q rm

being S the entropy per unit volume in the bulk media (see eq. 2.7) and S,
the entropy per unit area on the contact interface 'Y satisfying the following
restriction

AN

%2 5w t om (3.23)

11y

where © and % are the contact interface temperatures. Also in this case
it is possible to introduce a dissipation term due to the contact effects D, so
that the total dissipation D* on the system is given by

D*=D+D.>0 (3.24)
where
[a® ¥
j— . =4
D.=0,5, oM + 0O ©.>0 (3.25)

heing ﬂ the characteristic te

LR Ciladialuel

ally the same as either ©
met

Followmg the same methodology presented for the bulk continua the dis-
sipation due to contact can be spitted in internal dissipation and dissipation
by conduction as

Dc = Dc,int + Dc,cund > 0 (326&)
Deint = 0.5~ [QP+QP] >0 (3.26h)
mmdz%(W>9HNMW)@D0 (3.26¢)

el

Finally, substituting equation (3.26b) into the balance of energy equation
(3.20) it is possible to obtain the equation of dissipation as

Dc,'int = ec LS"rc - Ec +in !.]N +tra g’?" >0 (327)
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3.3 Additive Decomposition

Tn the follaunne we will asenime that the av\n‘nv\l-101 ean fun

ction can be ad-

111 plic LUL]UVVILI&, YO VYALL QOO ULLIY ULLu,u Ul.l\; ABL‘JJ.IJL J9 5(& AL UIULL ALl VU AL

ditively decomposed into elastic (reversible) and inelastic parts [Laursen-98]
via

o e , _Da 9 oo\

r = 9r T 4r (9.40)

Hence, the split the total entropy generated at the contact interface can
also be partitioned into elastic and inelastic parts as [Cancun-99]

Se=5+57 (3.29)
so that the energy equation at the contact interface can be written as
De,mech = ©c 8¢ — B+t g + tra 6% 20 (3.30)

Note that the internal dissipation due to contact has been decomposed
into mechanical and thermal part, respectively given by

Dc,mech = ec Ss_ [QE;I) + Qg)] >0 (3313..)
Dc,ther = @c Sg > 0 (331b)

so that
Dc,mb = Dc, mech T Dc,ther >0 (332)

3.4 Constitutive Equations

In what follows the contact free energy function is introduced. The con-

stitutive equations of both contact nressure and tangential traction as well

BUAVIAUL YL LAURGUAVLIS L UV LULILGLL P UOOUWLT Qi VA liluits viGluiil GS WO

as the elastic entropy are obtained. Finally, the heat conduction and heat
convection laws are discussed.

3.4.1 Free energy function definition

Starting from the definition of the internal energy as a function of

Ec = Ec (gNl g’;‘a ,SS) Cc) (333)
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it is possible to define a free energy function ¥, via Legendre transformation
as

‘I’c = Ec - ec Ss = lI’c (ngg’le‘a :ec’Cc) (334)

Internal variable (. deals with a hardening-like behavior of the frictional
law characteristic of the wear phenomena [Agelet & Chiumenti-95], [Chiu-
menti & Agelet-95).

Following a standard argument in thermodynamics (se
previous chapter), one may time differentiate equation (3.3

e section 2.2.2 in
4) to obtain

V. = E.—9,5-6.5° (3.35a)
o Py Do e O, Dy (3.35D)
= 89]\7 aN 89%51 gr a@c c aCc gc ( . )

Taking into account the energy equation at the contact interface (3.30)then

6‘1’0 . a@c .o
D meen = (tN - @) gn + (tT& - Hge™ ) gr
T

oV . OV, L. O,
(s - AL P .

which must hold for any gn, ¢, and 8. Applying Coleman’s method, it
results

ty = ‘Z\AL (3.372)
UgN
ov,
t = .
Ta B (3.37h)
g = 0% (3.37¢)
c 8(—)c \Y- /

and the reduced equation of mechanical dissipation at the contact interface

is given by

Dc,mech, = tTa gg"a +- q«:é-c 2 0 (338)

where g, is the conjugate variable to the hardening-like parameter (. defined
as
v,

Q’c=—a—CC

(3.39)
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Let us now particularize the free energy function to obtain the standard
restrictions at the contact interface, assuming the following terms [Cancun-99)

Ue (gn, 977, Oc, o) = We (gn, 977) + T (Oc) + Ke (96, (o) (3.40)

being W (gn, 5% ), T (©.) and K, {B., {,) the stored energy due to the bod-
ies interaction at the contact interface, the thermo-contact potential and the
hardening-like potential, respectively given by

We(gn,97%)

1 e
5 €N (o) + 5 €7 97" Mog 93 (3.41a)
Ceo (B — ©,) — O, 1log (0./ 6,)] (3.41b)

T.(0,) =
Ko (046) = Zpi« (©.) (3.41c)
2

where 0, is the initial temperature field, C,, is the heat capacity associated
with the contact interface and €x and €7 are the normal and tangential

penalty parameters, respectively, that provide a penalty regularization of the

contact constrains [Laursen & Simo-93).
From this definition the constitutive equations that completely specify

t}‘nvmnwnnkn“ oal mammmbnnt Funn o sl e

e 14
1€ ICTINOIMECianicas CoNLacy Iaiewors Ies U.J.b J.JJ.

tv = €n (gn) (3.42a)
tro = Er Maﬁ g:e,ﬁ (342b)
. =1 Ay (@c) +1
Se = Ceolog(0/8,) - p;l o ].d—@c & (3.42¢)
i
te = =) 1p(0) ¢ (3.42d)
p=1
Equation {3.42a) defines the normal pressure as
’ 0 if gy(Xt)<0
Xt) = \ ’ 3.43
v (X8) {eN ov (Xt) if gn (X,8) >0 (3.43)
which are the regularization of the contact constraints of impenetrability and
non-adhesion, respectively given in Khun-Tucker form as
tv(Xt) > 0 (3.44a)
av (Xt) £ 0 (3.44b)
v (Xt tn (Xt) = 0 (3.44c)



=]
(]

FORMULATION OF THE CONTACT PROBLEM

Remark 3 Qbserve that the hardening-like potential K. (©.,(.) makes the
difference between the definition of the free energy function presented in
(Laursen-98] and [Cancun-99], respectively. In fact, we will see that in the
analysis of stability for the staggered solution of the coupled contact problem,
this term generates a coniribution (the frictional heating) that makes the
standard isothermal split conditionally stable. Thus, it results very inlerest-
ing the formulation of on unconditionally stable algorithm using an isentropic
operator split [Cancun-99].

3.4.2 Thermal contact model

To complete the thermomechanical frictional contact model, the heat con-

duction and heat convection laws must be considered [Wriggers & Miehe-92],
[Zavarise & Wriggers-92].

Heat conduction model
Heat conduction through the contact surface Qg)cmd has been assumed to be
a function of coefficient hg?nd depending on of the normal contact pressure

ty and the mean gas temperature ©,, multiplied by the thermal gap gg) =
(©® — ©,) of the form

QY =1 (tn, 0g) g8 (3.45a)

In the literature it is gossible to find different relations to define the heat
conduction coefficient h{ .

General contact pressure-temperature dependent heat conduction model.
The resistance against heat transfer is mainly due to the low percentage of
surface area which is really in contact. The presence of a reduced set of
spots surrounded by microcavities characterizes the contact area. Hence,
heat transfer takes place by heat conduction through the spots and the heat
conduction through the gas contained in the microcavities. Other effects
such radiation between microcavities surfaces can in general be omitted since
both bodies are very close to each other. Making the usual assumption that
both heat conduction mechanisms, through the spots and through the gas
contained in the microcavities, act in parallel, the heat transfer coefficient
heond (tn) can be expressed as

Reond (tn, ©g) = hg (tn) + he (tn, ©y) (3.46)
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where hg (tn) is heat conduction through the spots, assumed to be a function
of the contact pressure ty, and hg (ty, @) is the heat conduction through the

m nmed to be 5 F tinn of the contact
gas contained in the microcavities, assumed to be a function of the contact

pressure ¢y and the mean gas temperature ©,. Based on a statistical model
the heat transfer coefficient through the spots is given by

0.95
— G— —c2 | 140.71¢cy
1.25_km in (1 6210 ) (3.47)

1
where & is the surface Touguuess, n is the mean thermal (,OH(lU.LElVIT.y \ae-
pending on the conductivities of the two interacting bodies), 7 is the mean
asperity slope and ¢; and ¢; describe the hardness variation [Song-87), [Wrig-
gers & Miehe-92].

The heat transfer through the gag or liquid contained in the microcavities
is mainly governed by conduction. This fact results from the small height of
the microcavities which do not allow convective flow. The expression for this
coefficient results in

t
he (tw, ©,) = —8— «/ “log (5505 + Oy (3.48)
1365y \ H/

where k; is the gas conductivity, H, the Vickers hardness and ¢, the consti-
tutive constant for the gas [Yovanovich-81].

Simplified contact pressure dependent heat conduction medel For high
pressures, a simplified contact pressure dependent model can be derived
€
1. fi N IN {tN\ {92 400
figond \UN ) = flco \H } \2.49)

where h,, is the contact resistance coefficient and ¢ is a constant coefficient
[Zavarise & Wriggers-92).

Heat convection model

3 1 £ ~la
Heat convection between the t U bodies arises when they separate from each

other. Heat convection flux Qc wonv has been assumed to be a function of co-

efﬁment 3 depending on the mechanical gap gy multiplied by the thermal
gap g8 = = (6% - 8,) of the form

Qons = 1o (1) 36 (3.502)
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where O, is the mean gas temperature.

The definition of the heat convection coefficient Aoy depends on the
conductivities of the interacting bodies. If the conductivities of the two
bodies are very different then A, can be assumed constant, otherwise it is
possible to consider the following expression

ke,
hcmw (QN) =

gn +

ho, cony

where k, is the conductivity of the air (or the gas around the bodies) and
he, conw 18 the initial value of the interfacial heat transfer coefficient [Ransing-98].

3.5 Evolution Laws

o, (tN: tT,@m(Ic) = ”thn,.ef (o (©c) — ] tv <0 (3.51)

“th“ref = \/ tT‘I MO!,H tT/S (352)

This function represents a modified version of the Coulomb law for fric-

tional contact problem where both a mechanical hardening and a thermal
softening are assumed [Cancun-99].

where

Let us introduce the evolution laws of the thermomechanical frictional
contact problem as
— po =3
Lvp{gh) = 7e0e— 77 =eng (3.53a)
." # VN >3 Y
Ge = Telnw (3.53b)
o d:uu (G)C)
S = e (3.53¢)

do.

where <y, is the slip consistency parameter and n. is unit normal to the
frictional surface given by

ba Agaf o
ir @ M*trg

—_— T I r—
1282l e  Jtre M®Pirg

n, = (3.54)
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Frictional constraints are expressed as Kuhn-Tucker complermentarity con-
ditions as

Ye > 0 (3.55a)

@ (tN;tTm@c:QC) < 0 (355b)
Dt a)l = 0 {32.55¢)
fC*C\ lVl".! @) "’C)‘icj hd 7

augmented by the consistency requirement
'ch.)c (tN; tra, ©c, ) =0 (3'56)

Taking into account this results and making use of equations (3.17b) and
(3.42b), the evolution law of the frictional tangent traction results in
LVT (th (X,t)) =EC7 [va (X,t) - Ye nc] (3.57)

where Ly, (*tr (X)) = {ra 7% is the Lie derivative of the frictional tangent
traction along the flow induced by the relative slip velocity vr.

3.6 Thermo-frictional Dissipation

Making use of the evolution laws of the internal variables it is possible to
obtain a compact expression of the mechanical and thermal dissipation, re-
spectively given by

Dc,mech = ira g’_:[l)“a +q’céc

btrej + Yeldc tN

= Y|Pt (O )tN]

Ve [to () tn] > 0 (3.58)

and
Dc,ther = ec 5')3

Apto (Oc)

Observe that according to the inequahty on the thermal dissipation the
following constraint must be verified

dito (96) ( 2
ae., - '
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3.7 Wear Phenomena
Fric

nal behavior at the contact surfaces, betwee

rel-
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g
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Q
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D
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o
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j= W
5
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ative to one ancther, highly depends on the nature and topography of the
surfaces in contact, such as the hardness and the geometry of the microasper-

H™Y £, +3 at 11 1 m
ities, surface coating, ehc., as well as on the environmental factors, such as

the lubrication, which characterize the state conditions of the contact sur-
faces [Laursen-98)], [Lassen & Bay-93]. These state conditions at the contact
surfaces may be constantly changing as a consequence of complex phenomena
bdl(lllg place uulli"lg continuous mu,u‘ﬂg of the uut.ucb such as the wear due to
the evolution of the surfaces topography, i.e., deformatlon of the microasper-
ities, worn of surface coating, etc., internal straining, chemical reactions, etc.

Despite these facts, most of the current applications reported in the lit-
erature are restricted to a standard Coulomb law, using a constant friction
coefficient u, such as

O, [ty

Ay
L\"lv)

(X3

) — ”bffr?f” —u, tn <0 (

1.)

1)

Such simple models may represent only a limited range of tribological
situations and it appears to be necessary to develop a class of models which
incorporate the state conditions and their evolution at the contact surfaces,
taking into account the influence of complex phenomena such as wear, lubri-
cation and chemical reactions, among others.

A generalization of the Coulomb law is presented in this work, within a
fully non-linear kinematic setting, including large slip and finite deformation,
introducing the hardening-like variable .. It is possible to observe that this
variable allows the simulation of frictional wear behavior at the contact in-
terface [Agelet & Chiumenti-95], [Chiumenti & Agelet-95]. In fact, replacing
the value of g, given by equation (3.42d) we can obtain the expression of the
frictional coefficient as

K (Ccv Gc) = o+ Z Hp (8. ¢t (3.62)

so that either a thermal qnﬁ‘P'n'mn due to fhp temperature dependence of the

ependendce ol

frictional coefficient, or a mechamcal hardening are available in the model.
Note that the Coulomb law can be written in the equivalent form,

®, () tras O ) = ”"t”f |- 1 (0 in<0 (3.63)

once defined the expression of the frictional coeflicient given by (3.62).
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interface are introduced. These equivalent equations are obtaine

Aot
g
g
5}
3

3.8.1 Entropy form

The entropy form of the balance of energy equation at the contact interface
is given by

ec Scz [Q.(:l) + ng)] + Dc,int (364)

Taking into account the additive decomposition of the entropy function
{3.29) it is also possible to consider the following equivalent system of equa-
tions

0.5 = [QV +QP) +D¢ meen (3.65a)

057 = Do oond (3.65b)
showing the local evolution of the different contributions of the entropy func-
tion.

3.8.2 Temperature form
Applying the chain rule to the elastic entropy function
8.5¢ = C.8, + H' (3.66)
where the following notation has been introduced
e 2
Ce = @c% =Cq — 0K (3.67a)
00, 86,00, ' /
a5¢ g, ;
Hfe = —L(, =—-0,—= .
O, ac, ¢, e°a@c(:c (3.67b)

being C. the heat capacity associated with the contact interface and H'¢ the
frictional contact heating.
Thus, equation (3.65a) can be transformed into [Cancun-99],

CeBe = [ + Q) +Dg mecn, — H' (3.68)
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Remark 4 Note thai the frictional contact heating appears only if q. depends
on the temperature fields. This 1s possible only if both the thermal softening
and the mechanical hardening of the friction coefficient jip (B¢} are taken into

account in the definition of the free energy function.

3.9 A-priori stability estimate

The goal in this section is the extension of the a-priori stability estimate
criteria to the case of thermo-frictional problems.

Conserving the same notation introduced in the preceding chapter, let’s
increment the functional L (u, v,0) by the term due to the contact interaction

L{u,v,0) = f (E -0, + %pOVT-V) dV + Vg (u)
o

+ | (B.-96,8)dS (3.69)
()

The a-priori stability estimate provides that
d
%L(u,v,e) <0 (3.70)

so that the nonlinear stability is ensured if L{u,v,0) is a non-increasing
Lyapunov-like function along the flow generated by the thermo-plastic prob-
lem. Therefore the rate of change of L (1, v,8) along the dynamics generated
by the coupled problem is computed as

{ ©
L (11, Q) = _j =y (Dmech + Dcond) av

o ©

@

o

(Dc,mech + Dc,cnnd) as S 0 (371)

D|

JT{R

¢

[

This condition is regarded as a fundamental a-priori estimate for the
thermo-plastic evolution problem accounting for the frictional contact inter-
action which must be preserved by the time-stepping algorithn [Armero &

Simo-93], [Laursen & Chawla-97)].
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3.10 Contact Contribution to the Weak form

The frictional contact contribution to the weak form of the momentum bal-
ance equation can be conveniently expressed as

GC = (69N)tN>[‘(l) + <6Ea )tTa >1—\(1) (372)

where 8 (-) is an admissible variation of its argument and () pay denotes the
Ly (T'W)-inner product on the boundary IV,

To obtain these contributions we used of the equilibrium condition at
the contact inierface [Agelet-97b]. Therefore, for each point X € I'D, we
require that both the frictional contact force induced on body @ at the
material point Y (X,¢) must be equal and opposite to that produced on
body A at point X . Mathematically, this equilibrium condition take the
form

t0 (X, 1) dP® + @ (X, 1) dr® = ¢ (3.73)

The expressions for dgy and §2% can b ]
and therefore will not be given here.

"The contact contribution to the weak form of the energy balance equation
can be obtained taking into account the heat fux interchanged at the contact
interface. Applying the divergence theorem, the result previously obtained
with equation (2.149) changes in

3wy T mvrmnnan 0, Q: .. 0O
e found m [La.ulat:u & oimo-91

= & QA a(1) A1) L /2.902) Al
(89,V - Q) = (V(89), & VO) + (59, Do + (69, Q e T 0T, QL)

s0 that assuming the following hypothesis

(859, 0) = (699, Q) (575)

the contact contribution to the weak form of the energy balance equation
can be written as

G =~ (59, Q) — (597, 0 1, 79
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Coupled Problem

This chapter deals with the numerical solution of the coupled thermo-mechanical
problem involving the transformation of an infinite dimensional transient sys-
tem; governed by a system of quasi-linear partial differential equations into
a sequence of discrete non-linear algebraic problems by means of a Galerkin
finite element projection and a time marching scheme for the advancement of
the primary nodal variables, displacements and temperatures, together with
a return mapping algorithm for the advancement of the internal variables.

A fractional step method arising from an operator split of the govern-

ing differential equations has been used to solve the non-linear coupled sys-

tem of equations, leading to a staggered product formula solution algo-
rithm [Armero & Simo-92|. [Armero & Q1mn_Qq.| [Armero-Thesis-03], An

4AVLLLLL S AL LAY L ALV ey A AR AL B lalls v | Kttt | 4 had
isentropic and isothermal operator splits are forrnulated and their non-linear
stability issues are discussed. The final goal is to get an accurate, efficient and
robust numerical model, allowing the numerical simulation of solidification

nnnnnnnnnnn +ha voadal g

43 drr
Procionees in the metal Casuiilg luuu.al.u.y

A1
= T 8

The numerical solution of the coupled thermo-mechanical problem involves
the time marching scheme for the advancement of the primary nodal vari-
ables: displacements and temperatures.

With regard to the time stepping scheme different strategies are possi-

71
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ble, but they can be grouped in two categories: simulteneous time-stepping
algorithms and staggered time-stepping algorithrms.

Simultaneous time-stepping algorithms solve both the mechanical and the
thermal equilibrium equations together, thus advancing all the primary nodal
variables of the problem, displacements and temperatures, simultaneously.
This invariably leads to large and unsymmetrical system of equations, usually
prohibitively expensive to solve. Furthermore, the use of different standard
time-stepping algorithms developed for the single uncoupled problems is not
straightforward, and it is not possible to take advantage of the different
time-scales possibly involved in the problem for the mechanical and thermal
parts. On the other hand, it is relatively simple to devise unconditionally
stable schemes using this approach.

A variant of this approach is to attempt the solution of the resulting
equations using a block-iterative solution. This leads to smaller and usually
symmetric system of equations to be solved, but then the study of stability
of the algorithms is complicated, as it depends on the tolerances used to
assess convergence. The problem of stability in time is then linked to that of
convergence within the time step [Cervera & Codina-96].

Staggered time-stepping algorithms are based on the use of an operator
split, applied to the coupled system of non-linear ordinary differential equa-
tions, and a product formula algorithm, which leads to a scheme in which one
of the subproblems defined by the partition is solved sequentially, within the

framework of classical 'Ffr'nchnfpn’ sten methods. Thig lead to the nartition of

21cualICWOLA UL Liaosildl woellielow SUEL ToGuells, 4 iiio 186U VU WlT pad viviUll U1

the original problem into smaller and typically symmetric (physical) subprob-
lems. Furthermore, the use of different standard time—stepping algorithms

develoned for the uneocusn 2d ahle ~d |
ucvaiupou IGF U0€ UnNco u.yxcu su Uy.l. O0LEMS J.‘.: now 8 u OJEJ.I.M.UL War u, aiid l b 13

possible to take advantage of the different time-scales involved. Additionally,
it is now possible to obtain unconditionally stable schemes using this ap-
proach, providing that the operator split preserves the underlying dissipative
structure of the original problem [Armero & Simo-92], [Armero & Simo-93],

[Armero-Thesis-93].
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4.1.1 Simultaneous algorithm

The discretization of the continucus problems to be considered will lead to
a non-linear algebraic system of equations of the form:

[ K K | [U)_[F ]
| Kou Koo || © ] | Fo |

where U and © are the vectors of nodal unknowns at a certain time step of
the two fields under consideration, F,, and Fy are the vectors of forces, and
K;; 1,7 = 1,2 are matrices generally depending on the unknown fields. The
algorithm for the direct solution of problem {4.1) with a simultaneous strat-
egy can be chosen from among the variety of linearization schemes available
for the solution of non-linear problems. Here, we can mention the well-known
Newton-Raphson method or the somehow more sophisticated Quasi-Newton
or Secant-Newton methods. The steps involved in the sclution process would
follow exactly those necessary to solve an uncoupled non-linear problem of
similar characteristics. One disadvantage of this strategy is that the structure
of the global matrices K, ; is such that entries come from different dornains
or they represent physically different magnitudes. Another disadvantage is
the larger size of the global matrix as compared with the ones arising from
the different fields. On the other hand, the advantage is that the final al-
gorithm is easily and clearly defined and its analysis, regarding for instance
convergence, is feasible.

4.1.2 Block-iterative algorithm

Let us consider now the use of block-iterative algorithms to solve problem
(4.1). This will reduce the size of the resulting subproblems at the expense
of iterating. Assuming that the first block of equations in (4.1) is solved first,
there are two possible block-iterative schemes, namely

3 i 1—1 i
KOU® = F, - KE Vet (4.2)
and
KPe® = F, —KPU® k=4-1ori (4.3)
Here, superscripts in parenthesis refer to iteration counters. For k =i —1
this is the block-Jacobi (or block-total-step) method, whereas for k = 7 it is
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the block-Gauss-Seidel (or block-single-step) method. From elementary nu-
merical analysis it is known that, under certain conditions, both the Jacobi
and the Guass-Seidel methods converge linearly when applied to linear sys-
tem, the convergence rate of the latter being twice higher than that of the
former. In their counterparts these properties are inherited, the convergence
rate depending now on the spectral radius of the matrices invoived.

On the other hand, problem (4.1) is non-linear, so that an iterative proce-
dure must be used to deal with this non—linearitgr_. Newton-Raphson method
is defined by approximating the generic term KX as

KOX® ~ KE-UXO 4 g, KED [XO - XY (4.4)

where d, K" arises from the derivation of K%Y with respect to X. Using
this kind of linearization it is possible to transform non-linear problems (4.2)
and (4.3) into their linearized versions: so that either the non-linearity or
the coupling could be solved using a nested iterative loop. However, there
is the strong temptation to use a single iterative loop to deal both with the
non-linearity and the coupling [Cervera & Codina-96].

The staggered solution presented has some advantages: the structure of
matrices in the left-hand-side is such that entries come only from the fields
currently considered, so that the integrals have to be evaluated only in that
domain, and they represent physically homogeneous magnitudes. Moreover,
for many practical applications these matrices are symmetrical. Finally, note
that the two systems of equations to be solved are smaller in size and with
reduced band-width, as well as better conditioned, as compared to that yield-
ing from simultaneous problem (4.1). On the other hand the disadvantage of
a block-iterative solution of problems (4.2) and (4.3) is that iterations will be
needed even if the problem is linear. This is not especially inconvenient if the
problem is non-linear, as equilibrium iterations would be required anyway,
or if the coupling effect is not too strong.

It needs to be said that coupled problems are usually time-dependent and
their governing equations include time-derivatives. In this case an appropri-
ate step-by-step procedure has to be introduced to obtain the solution of
the problem in time. If the time dimension is involved the analysis of any
proposed solution strategy must consider the time integration stability of the
approach. If direct (simultaneous) solution of the couples problem is consid-
ered the stability analysis is analogous to that of a standard uncoupled tran-
sient problem [Hughes-87], [Zienkiewicz-91). Regarding the analysis of the
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block-iterative solution it is certainly complicated and very problem/scheme
dependent. It may happen that, even if an unconditionally stable algorithm
has been used for every one of the fields, the overall block iterative algorithm
may still be conditionally stable [Felippa-80], [Zienkiewicz-91]. Finally, an
important point regarding the stability of the block-iterative techniques is
that time integration stability will also depend on the tolerance demanded
to achieve overall convergence. As a limit case, if solution of problems (4.2)
and (4.3) is iterated until full overall convergence is achieved, then the stabil-
ity characteristics of the approach are identical to those of the direct solution
problem (4.1).

4.2 Fractional step methods

Here, attention will be placed to the staggered time-stepping algorithms
based on product formula of the governing equations [Armero & Simo-92],
[Armero & Simo-93], [Armero-Thesis-93].

4.2.1 Time-ste

Let kat [Z] : #XR— v be a one-parameter family of maps, which depends
continuously on a time-step At > 0, referred to as the time-stepping algo-
rithm, such that given the approximate solution vector Z, at time ¢, the
solution vector Z, 1 at time ¢,,; will be given by

Zn+1 — ]kAt [Zn] (45)

for At = tor1 —tn and Z,,Z,41 € V.
A time-stepping algorithm is said to be consistent with the semi-flow
generated by the non-linear operator A (-} if the following conditions hold

Am ka 2] = Z (4.6)
Jim s ka2 -2) = A(2) @)

A time-stepping algorithm is said to be convergent if the following con-

Jim I, [Z,] = F (2, (4.8)
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for At = (t—t.)/k and ¢ € [tny1,%s], where the iterated algorithm k&,
defined as

ki, =kpso---okay (4.9)
An algorithm ka, consistent with the semi-flow generated by the non-
linear operator A (-) is said to be B-stable if it inherits the contractivity

property relative to the natural norm |-, i.e.,

N

”u«m (Zn] — K [Zn] L — Zo

x|

(4.10)

v v

for At > 0 and any two initial conditions Z,, Z,, € v.
An algorithm ]km, consistent with the semi-flow generated by the non-
linear uqutw. n\ , is said to be daaa:,yu,bwc -stable if it inherits the a- pT’LOT”L

estimate on the dynamics, that s
L(ka(Z) - L(Z) <0 (4.11)

for some At < At and any Z € v where L () is a non-negative Lyapunow
like functional.

The dissipative stability is the appropriate notion of stability for dissi-
pative dynamical systems. Observe that if Al = oo the algorithm is said
to be unconditionally stable. Otherwise the algorithm is said to be only

conditionally stable [Armero-Thesis-93].

4.2.2 Local evolution problem

(‘ﬁhQIHnT' the followin

ViUt vl 1ULIOWIE

2

problem of evolution

(4.12)

along with
I'=~G(Z,T) in Qx[0,T)
T(t)=I, in Q (.13)
where Z is a set of primary independent variables, I is a set of internal vari-
A | 0
0 7 1]
is the tensor of visco-elastic and viscoplastic multipliers. In the formulation

ables, A (Z,T") and G (Z, T') are non-linear operators and v = [
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of the fractional step method described below, it is essential to regard the
set of internal variables I' as implicitly defined in terms of the variables Z
via the evolution equations (4.13). Therefore Z are the only independent
variables and their choice becomes a crucial aspect in the formulation of the
fractional step method.

Consider the set of independent variables
Z = [u,v,8% 57,57 (4.14)
and the set of internal variables
I =[e", E] (4.15)

where E? = [g*7,{ £] is the set of viscoplastic variables. All the remaining
variables can be defined in terms of Z and I by the kinematic and constitutive
equations [Alaska-97], [Cancun-99).

With these definitions in hand, the governing equations of the thermo-
plastic model can be written in the format (4.12) and (4.13), that is

,
v

pl V.o +b
1 : .
A(Z, P) = 6 [R =V Q+Dmeen, — L] (416)

1
L-DJ‘J'I.eT
© 1

C]

L

dA(s,0)

cwr- pufio (417
%
where ¥ =[s, q,g] is the generalized stress tensor.

4.2.3 Product formula algorithm

In this section a product formula algorithm emanating from an operator split
of the evolution equations is presented [Chorin-78]. The goal is to examine in
detail different classes of fractional step methods arising in the context of the
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coupled thermomechanical problem from possible splits of the differential op-
erator A. Ttis importa,nt to point out that these splits are formulated for the
continuum operator A and not for the discrete operator, say ﬂh a;fising from
a spatial discretization of the initial-boundary value problem. Consistency
of a time-stepping algorithm with A* does not imply necessarily consistency
with A as A — 0. Therefore, issues related to conditional consistency do not
arise in this approach. However, the final implementation of these algorithms
is discussed in the context of the finite element method.

The design of fractional step methods for the solution of problems of the
type (4.12,4.13) exploit additive splits of the differential operator A of the
form

A() =AD4A® (4.18)

or, more generally, of the sum of a finite number of operators A®) defining
a well-posed problem by itself. Then, a time-stepping algorithm for the
global problem is obtained formally as the product of two algorithms k) []

Pr\ﬁolcfnnf unf.h DQI“‘I"\ A(k) rncnnnfnrﬂ]v oo
COLNSIsVEnL Sp o C.84

ko []= (2 0 k) (419)

That is, the final solution Z,, 1 at time ¢, is obtained by solving the sub-
problem defined by A‘Y from the known solution Z,, giving Zn+1, followed
by the solution of the sub-problem A® form the known intermediate value
Zn+l

Problem-1
Zn — Z=A0Z] - Z.., (4.20a)
Problem-2
Zoyn — Z=AD[Z) > Z,, (4.20b)

The algorithm presented is only first order accurate. A second order
accurate product formula algorithm can be defined through a double pass
technique given by,

ke ] = (k0 0k 0 k,0) 1] (4.21)

...... (k) /4. . .
with individual second order schemes kj;,(k =1,2). This proeduct algo-

rithms was first proposed by Strang [Strang-69].



As an example, consider the following linear initial value problem gov-
erning the evolution of x () € R*

{ x(t) = Alx (1) = (A(l)+A(2>) [x(£)] )

where the linear operator A :R” — R" admits the additive decomposition
A = AW4A®, The exact solution of problem (4.22) at time tp4y = t, + h
st R~ N

WI h>0is Elvcu u_y

X (tny1) = exp[Ah] x, = exp ’-(A(l)+A(2)) h} X, (4.23)

In order to approximate this solution, consider the following split prob-
lems

Problem-1 — Problem-2
{ X (t) = A% (1) { x (t) = A®Px(t) (4.24)
X (tn) = X x(ta) =X (tni1)

Note that the solution of problem-1 is taken as initial condition for prob-
lem 2, and that both problems do indeed add up to the original problem
(4.22). This sequential solution scheme defines a product formula algorithm

X (tat1) = exp [AWR] exp [A(Z)h] X, (4.25)
where exp [A”“ )h] (k = 1,2), are the exact solutions of problems, 1 and 2,
respectively. Of course, product formula algorithm (4.24) do not furnish the
exact sclution to the initial problem (4.22), but can be easily shown that
(4.25) defines a first order accurate algorithm and repeated application of
formula (4.25) with decreasing time step yields the exact solution; i.e.,

7}—1—{20 (exp [A(l)h/n] exp [A(z)h/n] )n = exp [(A(l)—i—A(z)) h] = exp [Ah]
(4.26)
This is the so-called Lie’s formula, see [Abraham-83]. One can show that
above results essentially carry over for the case in which A is a non-linear
operator and the exact algorithm that solve problem 1 and 2 are replaced by
first order accurate consistent algorithms.
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4.2.4 Operator splits: a-priory stability estimate

Consider the dissipative evolution problem given by (4.12) — (4.13) with
the associated non-increasing Lyapunov-like function L () given by (2.24).
Consider an additive operator split of the vector field A = AV+A®) leading
to the following two sub-problems

Problem-1 Problem-2
z=A"@r) 2=-A%@zD) (4.27)
Pz'yG(Z,I‘) L =~G(Z,T)
The critical restriction on the design of the operator split is that each one

of the sub-problems must preserve the underlying dissipative structure of the
original problem, that is

d
—L(Z®, 1) <0; (a=1,2) (4.28)
dt b 1
wh@“e 7 and I'® denote the flow generated by the vector fields Al
=1,2.

Two different operator splits will be considered here. First an isentropic
operator split, which satisfies the critical design restriction mentioned above,
is considered, extending the results of Armero & Simo [Armero & Simo- 91],
[Armero & Simo-92], [Armero & Simo-93] to the more general case presented
here. This split is compared next with an isothermal operator split, which
does not satisfy the design restriction.

Isentropic operator split

Consider the following additive isentropic-based operator split of the vector
field A (Z,T) as follows

-
Qg
—_
e~
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=1

(4.30)
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and consider the following two problem of evolution
Pmblem-] Problem-2
Z=An(ZT)  2=AL(ZT) (432)
l—vbkb,i’) I'=~G(Z,T)

Within this operator split, Problem-1 defines a mechanical phase at fixed
total entropy S = 0 and Problem-2 defines a thermal phase at fixed configu-
ration. Note that a stronger condition has been placed in the Problem-1 by
the additional requirement that all the components of the entropy function
are held fixed

SF =0
§=88 48 45" =0={ §'=0 (4.33)
Sre =

Note also that the evolution of the internal variables I (Z,T') is imposed
in both sub- problems Additiona.lly, the temperature field is regarded as the

Aanmm And wonio Tas Ao v A N SURU [y | i FOTIE |

J.J..I.U.G}.)Cllu\jub Vdal.ld‘UlU iil TWO DuU—PlUUltﬂlllb ULMIIGU Tralner wnat une BIlEIOpy

Denoting by Z{® and I'®) the flow generated by the vector fields Al

8e )

a = 1,2, a straightforward computation shows that the following estimates
holds

d
W p@y = W) v <
5L (z I ) / D), dV <0 (4.34a)
A s . Y f o s e N
i @@y = — [ 2o (pl@ (2
pris (z ,T ) o5 (Dmech+Dmd) dV <0 (4.34b)

where Dfmzch, D(a)d and ©(*) are the mechanical dissipation, the thermal
heat conduction dissipation and the absolute temperature, respectively, in
Problem-a, a =1, 2.
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Thus, the isentropic split preserves the underlying dissipative structure of
the original problem. Therefore, in sharp contrast with schemes based on the
conventional isothermal split, unconditionally stable algorithms consistent
with the full coupled problem can be obtained merely as the product of two
unconditionally stable algorithms consistent with each phase. For dissipative
dynamical systems if each of the algorithms is wnconditionally dissipative
stable then the product formula algorithm is also unconditionally dissipative
stable. Note that unconditional stability in the context of non-linear problems
is to be understood as the algorithmic solution satisfying the a-priory stability
estimate [Armero-Thesis-93].

Isothermal operator split

Consider the following additive isothermal based operator split of the vector
field A (Z,T') as follows

AZ T =AMz 1) +A®(Z 1) (4.35)
where the vector fields AE;[), (Z,T) and A (Z,T) are defined as
( v
1
p— [V o+ b]
1 0 .
AR (ZT) = 1o (4.36)
a8
0
' 0
0
0
1 .
= |R-V.-Q+D —L—Hep]
AD(zr) = { © [ Qt Dinecr (4.37)
1
6Dther
1.
\ g"
and consider the following two problem of evolution
Problem: 1 Problem: 2
Z=A(ET)  Z=AnET) (4.38)
I'=~+G(Z,T) I'=~4G(Z,T)
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[}
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Within this operator split, Problem-1 defines a mechanical phase at fixed
temperature © = 0 and Problem-2 defines a thermal phase at fixed config-
uration. Note also that the evolution of the internal variables T'(Z,T) is
imposed in both sub-problems.

Dencting by Z® and I'® the flow generated by the vector fields A |
a = 1,2, a straightforward computation shows that the following estimates
holds

%L (z<l>,r<1>) = — [ Df;gchdwr / (1 i )HE"’“) dV £4039a)

am
d 2) T P
aL(z(),I‘( )) _ @(2) @ md) av

(1— (2)) H* v £ 0 (4.39b)

where Dﬁ:e)ch, Dgz?w H® and ©() are the mechanical dissipation, the ther

+i1m honotd ned +h
mal heat conduction dissipation, the structural elasto-plastic heating and the

o

absolute temperature, respectively, in Problem-o, a = 1, 2.

The contribution of the structural elasto-plastic heating to the evolution
equations of each one of the sub-problem arising from the isothermal split,
breaks the underlying dissipative structure of the original problem.

Note that this product formula is first order accurate and according to
(4.34a),(4.34b),(4.39a) and (4.39b) algorithms based on the isothermal oper-
ator split will result in staggered schemes at best only conditionally stables,
and only an isentropic operator split leads to unconditionally stable product
formula algorithms.

4.3 Time-discrete variational formulation

Ir\ t iQ section fhﬂ time-digerete variational 0‘[1’“"1

aty
1 LI SCCLUIOL valllo~LURLICLUE Valialllllar o LSt L

and isothermal formulations is presented.

Consider at typical time increment [tn,t,41] with At = ¢,,, — t, and
let {t1,,v,,@n} € © be the given initial data at time ¢, . The goal is to
update these values and compute {Upi1, Vi1, Oni1} € v at time t,,;. To
gain further insight into the implications of the two different splits presented,
consider a specific time discretization via a standard backward-Euler method.
Let us start from the unconditionally stable algorithms given by the isentropic
split, to be compared with the standard isothermal split.
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4.3.1 Isentropic split

Let consider the time-discrete variational formulation of the two phases gen-
erated by the additive operator split in case of an isentropic formulation. The
physical idea behind this method is to partition the problem into a mechani-
cal phase in which the entropy is held constant, followed by a thermal phase

in which the configuration (but not the internal variables) are held constant.
The strategy proposed below is motivated by the following design conditions:

» The operator split must inherit the stability estimate for the fractional
step method to retain unconditional stability.

e The two sub-problem defined by the operator split should have a sym-
metric structure in the sense that a subsequent spatial discretization
yields symmetric stiffness matrices.

o Time-stepping integration algorithm leading to a fractional step method
should exhibit good numerical accuracy, comparable to schemes ob-
tained via analogous time-discretization of the full coupled problem.

The cost involved in the final implementation
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must be comparable to that involved in the 1mplementat10n of the
conventional isothermal split.
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represent a significant 1mprovement over the existing methods. In par-

ticular the first condition provides vastly superior stability characteristics
1rlaila +ha rarnaining annAditianag anatira Flhnt +hio anbhaosaad soanfm s nan s 2o
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obtained at the expense of either accuracy or computational convenience
[Armero & Simo- 91], [Armero-Thesis-93].

the final class of aleorithms must
nna 1Lar t

Mechanical phase (isentropic split)

The problem in this phase is to find sclution {un+1,vn+1, (:)n+1} € v using

the f 'Fn]]nunnc‘ time-discrete mrei‘nm of ecuations

CYUQLIOIS

(dev (V°) , dev (Tnta)) + (div (n),Bor) = G
<Q) [dﬁ’t) (u)|n+1 é >

BT

<’7,[ D+ + tT (Tt J> =0 (4.40¢)

wi (440a)
0 (4.40b)
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SE, = SE (4.40d)
St = 82 (4.40e)
Pl = SF (4.40f)

where {1,9,7} € v, denotes arbitrary admissible variations, and G|, ., is
the work due to the external forces, given by

G|n+1 <677a n+l> + (67’, n+1> an (4.41)
i ' d

Crpi =Tn+%,11Gnn (4.42)

that is an isentropic return mapping algorithm detailed in the next section,
as a consequence of isentropic solution proposed.

Observe that even if the balance of momentum equation is enforced in
weak form, as will be the case in a finite element context, the temper-
ature evolution equation during the mechanical phase is always enforced
in strong form. In the context of finite element method, this means that
equations (4.40d,4.40e and 4.40f) are evaluated at each quadrature points.
This is the crucial observation for an efficient numerical implementation
[Armero & Simo- 91, [Armero & Simo-92]. It must be also pointed out that
the restriction on the entropy is taken into account keeping fixed the differ-
ent components obtained by the additive split of the total entropy function
presented in the continuum formulation (see eq. 2.71a). This stronger algo-
rithm design requirement is crucial for the symmetry of the final formulation
(at least in case of constant material properties). In fact, the consequence
of equation (4.40d) is the change of the temperature from value ©,, at the
beginning of the time step to the intermediate temperature @, at the end
of the mechanical phase. In view of the evolution equation of the inelastic

entropy is proportional to the change of the yield criterion with temperature

then condition {4.40e} implies that no thermal softening is permitted in the
mechanical phase. Therefore, the flow stress is frozen at the initial temper-
ature en It is this feature that renders the final formulation a_yuuu\-,'l.ut,
in a consistent linearization of the governing equations [Armero & Simo-93],
[Armero-Thesis-93].

Finally, taking into account that the rate of entropy due to the phase
change is proportional to the latent heat function according to the evolu-
tion equation (2.72) then equation (4.40f) limits its evolution [Alaska-97],
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[Cancun-99]. Therefore, agree with the definition of the latent heat function
2.64), in the mechanical phase both solid and liquid fraction must be frozen

at the initial temperature &,,.

Remark 5 Design condition (4.40d) implies the evolution of the tempera-

ture field in terms of the configuration and (possibly) the hardening variables.

This equation can be solved numerically, if necessary. The key implication
in a finite element context is that only the mechanical degrees of freedom
{u,v} are involved in the global solution of the first phase, since Opy1 s
defined locally. This properties renders the numerical implementation essen-
tially identical to that of algorithims based on the traditional isothermal split

[Armero & Simo-93].

Thermal phase (isentropic split)

Application of a backward-Euler to the thermal phase of the isentropic for-

mulation v‘lp]de the following equation

........... the ng equations

<5nu,@n+1 (S’;E“A; % ) i L"“A; L"> +{V (59) , Ent1 Vpp1)
= &, (4.43a)
Sty = S+ AAt Diper nia (4.43b)
' Gntr
s, = LMT;;& (4.43¢)
where

G |1 = (89, Ruys) + (89, Dmcctmr) = (69,3, ) (4.44)

with the associated evolution equations for the internal variables
Lot = +9,01Gott (4.45)

given by an isothermal return mapping for the plastic variables and a back-
ward Euler for the viscous strain tensor, detailed in the next section.
Observe that taking adva.ntage from the equality SF = = 5% satisfied in
the mechanical phase the time-discretization of equation (4.43a) uses the en-
tropy form of the energy equation. Although the intermediate temperature
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O,41 in the initial condition for the thermal phase, this special treatment of
the energy equation makes the final numerical implementation independent
of ©p11. Thus, this phase reduces to a heat conduction problem at the known

fixed conﬁgurauon {un+1 =Uny1,Vpyy = vn+1} with the only remaining in-
dependent variable ©.,,;.

4.3.2 Isothermal split

Standard staggered time-stepping algorithms for coupled thermomechanical

problem consist of a mechanical phase at constant temperature followed by

a thermal phase at fixed configuration. Also in this case the evolution equa-
tions for the internal variables are enforced in hoth phases of the operator
split. Two different isothermal splits will be compared. In the first one the
same set of independent variable Z = [u,v,5%, 57 ;57| and the same for-
mat of the energy equation (entropy form) used in the case of isentropic
split is considered. A second isothermal operator split is proposed assuming
Z*=1u,v,0, L] as a new set of independent variables and considering the

temperature form of the energy equastion (2.126).

Mechanical phase (isothermal split)

The following time-discrete system of equations is used to solve the mechan-
ical phase of an isothermal split

(dev (V'n) , dev (@as)) + (div (0) Pos) = Gloyy  (4.d60)
(g, [div ()]0 = Buia]) = 0 (4.46b)
ol 1
<’Y, |:_lﬁn+1 + §t7" (En+1)j|> =0 (4.46¢)
Sn+1 = —0¥/08 (4.46d)
S = 5 (4.46c)
Sﬁil = 5 (4.46f)
together with a standard isothermal return mapping for the internal variables

f‘n+1 =TI, + ‘771+1Gn+1 (447)

Also in this case the intermediate {'nnﬂgura“ign is the final
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the restriction on the temperature evolution. As a consequence the value of
the elastic entropy must change and it will be used as the initial condition

D ot +han Ao aidy Fonn ~F & arvnal A H 3 R .

to l,uu;p‘uuc the Capacity verii o1 the thermal cq‘uauuu in the thermal pndb(.
It is also possible to observe that keeping constant the temperature field
both the inelastic and the phase-change entropy terms are held constant in
the mechanical phase so that both the flow stress and the solid fraction are
maintained fixed.

Thermal phase (isothermal split)

This phase is characterized by the time-discrete variational form of the energy
equation written in the entropy form

SE S, Loy - L,
<519,9n+1( n+1At n+1) + +1At >+

(V(69), kns VO = G |7 (4.48a)
SE, = —0v/oe (4.48b)
Sr{ 1 = Sr{ + At Dth.er T+1 {4.48“\
v 6n+1 '
Ln—l—l - L'n
= 4.48d
+1 9n+1 ( )
together with the update of the internal variables as a consequence of the
update of the temperature field
Invt =L+ Y1 Grpa (4.49)

Observe that in this case the additional term due to the elasto-plastic
heating H.f; must be taken into account in the definition of the thermal

load, so that

S |8 _ O | — (&5, HEP ‘A
lntl = M g1 VY . n+1/ [\

This contribution come from the constraint on the temperature field as-
sumed in the solution of the mechanical phase of an isothermal spit.

T

R

fa
U

o

Mechanical phase (temperature form)

It is possible to consider an equivalent isothermal split using as the main vari-

ables of the split the temperature field and the latent heat function together

with the displacement and velocity fields Z — Z*=[u,v,0, I].
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In this case the time-discrete system of equations governing the mechan-
ical phase is the following

(dev (V*n) ,dev (Tnp1)) + (div (M), Doy1) = Glop (4.51a)

(g, [div ()41 — On1]) = 0 (4.51b)
.o 1 -

<7, {—ﬁnﬂ +gtr (Fn+1)J > =0 (4.51c)

@n+1 = @'n (451(1)

Ln+i = L, (4'516)

together with the update of the internal variables

L1 =Tn+%1Gnn (4.52)

It is clear that the solution of the mechanical phase obtained using this
operator is identical to the result given by the isothermal operator introduced
in the previous section.

Thermal phase (temperature form)

Time discretization of the energy equation is now obtained using the tem-
perature form (2.126).

<619, Cpi1 (@”“ —_ @”) 4 Lowi = L”> +(V(69) , kny1 VO 1)

At At
~ 1€p s e N
G | (4.53a)
Luyi = L(Oni1) (4.53b)
together with the update of the internal variables
1-"n+1 =T, + 7n+1Gn+1 (454)
The advantage is that in this form it is not necessary the evaluation of

©
the elastic entropy SZ,; at the intermediate configuration.

Remark 6 It must be pointed out that the entropy form of the energy equa-
tion has shown a superior numerical accuracy n a number of numerical tests

when compared with the solution of the thermal phase based on the energy
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equation in temperature form. This is essentially due to the fact that the
heat capacity term comes from an additional derivative of the free energy _j

45 YR b Af olaodla oemdanann
Junction with respect to the term proportional to the rate of elastic ent

(see eq. 2.127a).

rmulation are equivalent in o linear context.

4.4 Time-integration of the constitutive equa-
tions
Let [0,7] C R the time interval of interest, if we use the compact notation,

that is, E =g, 0,0], I' = [¢”, E*?], E*? = [¢"?,{,£] and X =s, q,q], typically
at time tnq1 € [0,T) the following steps are involved:

1. The discretized momentum equations generate incremental motions
U, which, in turn, are used to calculate the strain history by means
of the kinematic relations

Enp = [V (0)[,4,,0,0] (4.55)
where V* (o) denotes the symmetric gradient;

2. for a given strain history, new values of the internal generalized vari-
ables I',;; and generalized stress fields X, are formally obtained by
integration of the local constitutive equations with given initial condi-

tions
Fn+1 Ty = 7n,+1G (Z7 F)n+1 (4’563‘)
I'{t,)=r, (4.56b)
and
Z’n.+1 =C. (En+1 - E:IJ’.1) (457)

where C = [2G1, 2K 1, H] is the generalized moduli tensor;

3. the momentum balance equation is tested for the computed stresses

and if viclated the iterative process is continued by returning to step
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In most of computational architectures currently in use, steps 1 and 3 are
carried out at a global level by finite element procedures In the next sections,
we will focus on step 2 as the central problem of computational plasticity as
it corresponds to the main role played by constitutive equations.

The developments in this section provide a unified treatment of a number
of existing algorithm schemes here extended to accommodate both isentropic
and isothermal constraints.

4.4.1 Elasto-plastic operator split

In this section a product formula algorithm emanating from a standard
elastic-plastic operator split of the elasto-plastic constitutive equations is
presented [Krieg & Krieg-77], [7], [Simo-94]. The basic idea consists of a
two-steps-algorithm to be applied to the evolution equations as follows:

1. an elastic #rial predictor, obtained by freezing the plastic flow during
the time step, followed by,

2. a plastic corrector that performs the closest-point-projection of the trial

state onto the yield surface.

Using the compact notation % = s, q,q], E” = [¢*?, { £] and C =[2G,
2K, H| the additive split results in

Total = Elastic predictor +  Plastic corrector
EP=4V®(Z) = E?=[0,00 + E?=+"Vd(X)

Applying an implicit backward-Euler difference scheme, it is possible to
define a trial elastic stote given by

up trial _ p
EY, =E] (4.582)
so that the associated trial stress field results in
trial vp""‘l\ _ / \ 1A @
T = C \“n+1 -En J = C: (Bnyy — EY) (4.59)

At this stage the trial state could be inside or outside the elastic domain
E, , it means that the loading function @ () must be checked. It is possible

e cra 1A
to demonstrate that if ¢ (E::‘_ﬁ_z) IS Convex, then @ \L‘:ﬂ»ﬂl) 2 ® \L‘n+1) 80

that
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o if &(Zirial) <0 > @ (Xpt1) < 0and 47 = 0 so the process is elastic

and the trial state is the final state
EZ, =EZX," =EF (4.602)
and _
Bop = X0 = C.(E,yy — EP) (4.61)

e If, in other hand, ® (29} > 0 — @ (,11) > 0 and v > 0 the plastic
corrector must be applied by a return mapping algorithm. According
to the product formula, the resulting final state becomes in

trial

Ef =Bl +97 Ve (Zuh) (4.62a)

and according to the closest-point-projection algorithm [Wilkins-64],[Krieg
& Key-76], the stress fields transform in

by —n P\ __ wirial__up o~ OoF s \
Spdl T A g T B ) T 2y Y PO V@  2e4)

—~
iy
oy
(]

.

4.4.2 Linear multi-step methods

A generalization of the classical reburn mapping algorithm for classical plas-
ticity, described above, uses ideas from linear multi-steps method [Gear-71].
Consider the first order differential equation, subjected to initial condition

{ £=f(z1) (4.64)

z (to) = 2p
The generic s_y, order integration scheme using a linear multi-step method
is the following

3 8
Z OpZntr1-k = OF Z Bef (Zns1—p, try1-k) (4.65)
k=0 k=0

In particular, if we consider a Backward-Difference scheme then the def-

R & o4

inition for coefficients oy, and F; result in

g::?} — k=0 (4.66a)
(L=\ hY

1
XpZni1—k = §L 20 ~
b = } - k21 (4.66D)
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=]
)

where the operator D®z, ., is defined as

D(k+l)zn+1 = D(k)zn+1 — D(k)zn (4673‘)
DO%i = 2 (4.67b)

It is possible to show that this method is stabie only when s = 1 or
s =2 . In case of s = 1 we recover the Backward-Euler method so that the
integration algorithm for the first order differential equation reduce in

Zng1 — Zn = AL f (_zn+1)tn+l) (468)

while, if s = 2 the resulting algorithm is named Gear method and its structure
is the following

3 1
§Zn+1 - 2Zn + Ezn_l = At f (Zn+1,tn+1) (469)

These two algorithms could be summarized in the single relation

4

a1 = 2+ g (5= 1) (20— 20-1) + AL f (Zays o) (470)

It is important to observe that Backward-Euler method (B.E.) presents
linear convergence while in case of Gear method the convergence is quadratic.

"Taking into account relation (4.70), it is possible to define a more general
elasto-plastic operator split in which the trial state is given by

trial _
2 =+ 3 (s = 1) (2n — 2n1) (4.71)
4.4.3 Isentropic algorithm

At time t,, in a typieal time mcrement [tn, tns1], the primary variables {u,,,® o}
and the internal variables {2, %, ¢{,.£.} are given. In this phase of the
product formula, one solves for the current configuration w,,; via an itera-
tive procedure in which the current iterate is assumed glven. The compu-
tation of the new iterate involves the evaluation of the current stress and
tern'oerah]rp fields &7 and O,..1, and of the updated internal variables

+1, CG HILCNas vVarlaties

{en +10 Bl ¢, +1,£n +1} Given a finite element dlscretlza.tlon this update
is performed at each quadrature point and proceeds as follows.

'For notational convenience, the bar will be dropped in what follows. The values
obtained in this mechanical phase have to be understood, however, as intermediate values
that will be modified to its final value in the thermal phase.
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Trial state (kinematics)

According to the elasto-plastic operator split,

vptrial

1 = €np1 T Va1 Dn1 (4.72a)
Cot1 = ;t:ﬂt ~ Ynt10nt1 (4.72h)
2
bopp = &Y +’Yn+1\/ 3 (4.72c)
where the elastic trial predictor for the plastic variables is computed as
ria 1

e:’,ﬂfl b= er+ - 3 (s—1) (e —e?)) (4.73a)
glrial o +1(S_1\(r —¢ ) (4.73b)

Satl Sn 3 Ly J\sn Sn-1/ =

; 1

il = btz L) (4.73¢)

The intermediate temperature ©,,, is computed using the local equation
SE =0 — SE £ = SE. Note that due to the fact that the final state is
unknown, this temperature is calculated assuming the trial state so that the
result is a trial femperature filed (\t”“[_ A local Netwon- Raphson 15 used to

get the zero of function AS® = 0, starting from the initial temperature ©
S0 that:

ns

AB® = ¢
loop
de(k) _ _S’EH (9" + A@(k)) — Sf (@n)

dSE,./ d©
AR — AW 4 go®
end loop

trial
nna_o

o
“Matdl — ~

AL

The trial viscous strain tensor E;TIM is computed applying a backward-
EBuler scheme to the evolution law of the viscous strain tensor, so that con-
sidering the following system of equations, it results

ptrial At

— U trial
€pt1 —E,+

— S
e () (4.74a)

l strial — 2G (©irial) [dev (Ens1) — 27" — e”"i‘”J

n+l n+1
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o)
|
t
£
=
=
Q
2
n
(=]
o

where it is possible to observe that the trial viscous strain tensor depends on
a trial deviatoric stress tensor considered by assuming the trial values of the

internal variables. Let 7% be the trial relaxation time, given by
U trial trza.l
. 7 (© ] 5 (@
Ttma.l — ( ntl ) ( 'I‘L+1) f ( ) (475)

97 (Gtrial e, \ oY (Gtrial) X (O )

gu\ ,”‘ 1, \J\Un+1j I\‘\\/nl
where it must be pointed out that the solid fraction f¢ (and consequently
parameter A) has been evaluated at time &, due to the restriction on the
evolution law of the phase change entropy term

. 1. .
SP¢ = 6L fs =0—= fg=const = fs(@,) (4.76a)
This given, the trial viscous strain tensor results in
pirial o At tmal M
Cnrt =t S A dev (Eni1) — €1 — En] (4.77)
The limit cases are shown in the following table
If ©>0; then r7@=0 — &= de}f,gzsnﬂ) eny
If ©<0g then 7" =00 — evly =€2
(4.78)

Note that when the material is liquid, that is © > Oy, all the deformation
are viscous, otherwise when it is solid, that is © < Bg, the viscous strain
tensor is 'frozen’.

Trial (generalized) stresses

Using the trial values obtained for the internal variables it is now possible to
compute the trial generalized stresses as follows

P = k(B) [enns — € (O9)] (4.79)

srit — 26 (B4 [dev (enp) — 1" - el (4.790)
T trial S Atria trial v

= m26‘ (Bfieh [dew (€ns1) — €51 —sn] (4.79¢)

ant = ——K (e ¢ (4.79d)

qifﬁl _ (f;z_cil’ Zﬂiail) (4798)
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where K; is given by
Ke (608.653) = [000 (673) — 00 (OF7)] [1 — eap (-6 £731)]

+H (O73) &t (4.80)
and finally, the trial thermal deformation is computed as
& (05) = 3[a(BK) (B — B1uy) - a(00) (B, — Or)]
+[e7(05) — 7 (8,)] (4.81)

where it is possible to observe that the current straining deformation e is
evaluated at time #, due to the restriction (4.76a).

Observe that due to the change in the temperature field given by the
restriction on the elastic entropy, all the material properties must be recov-
ered at current temperature ©% and updated following the temperature

evolution in the iterative process.

Trial yield function

The trial yield function is computed as

Tia ia E 4
241y — 18] - /3 [o (00) - g (452
where ' _
i = s — aiie! (4.83)

is the so called back-stress tensor. Qbserve that the initial flow stress o, is
evaluated at the initial temperature ©,, due to the restriction on the inelastic

7
entropy 8§,

: Dyper 2doy(0)
I - t—h’e = —.~P - 0 =
s ] 7 \/; de ©=0 (4.84)
so that
o, = const = g, (0,) (4.85)

If $i4% < 0 then the trial state is the final intermediate state,

pbriel

Y —
Cnel = Eppr (4.86a)
vp _ ,Upf.rial
Entl = Epp1 (4.86b)
_ trial -
gn—i—l - C'rﬁ-i (486'“)

ént1 .y (4.86d)

Il
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otherwise, if q)ﬁﬁr“f > 0 the plastic corrector must be applied. In this case
it is not possible to use a standard isothermal return mapping, in fact the

caatirrad diiweie o PR
constrain on the entropy evolution must be assumed during all the process

Isentropic return mapping

First, let us evaluate the unit normal to the yield surface defined as

Sn+l —Qn+1 Bnt1
1811 — @nall |81l

[T A 1|

n'n,+1 -

(4.87)

The final back-stress tensor B,.41 is unknown but it can be expressed in terms
of the plastic multiplier -7, and the final intermediate temperature Bny1 a8

6n+1
ﬁn+1”

1 Sirial | renn 3 . P F - . R
where 5, 18 & modified version of the trial back-stress tensor, given by

T

Slria ~ X 2
Br1 = ﬁf-b+1l - mQG (Brns1) + 2K (Op41) | 5 2t I (4.88)

3

7 (77 + At) G {Onyy)

B = oLt il quaf (4.89)
L o i A TET’LD.L (T + At) G (@;}’Z‘iall) i1 K (e;::‘j-ait) 1
and is defined as
Y (On11,05) (Bni1) £5(0,)
T = T”‘\_"’" / = Ir',\ _""'/ I AT (4‘90)
2G (@n_,.l, @n) 2G (®n+1) A (O,
Devel xpression (4.88) it is possible to obtain
T ~ (O 2 &) 'Y'Up 1 Strial
1+ 2G (6 K (6, ot = 4.91
[ (T + At ( +1) + 3 ( +1)) ||1@n+1” Bry1=Bng1 )
and if we take the norm of above expression
Il > \ [ 7 A fA . 27’/1_\ \\ up | =triall P
1B || + 7520 (Bnn) +3K (6nn) ) Hia = 8] (492)

the result is

o~~~
-
&0
[}
-
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Note that in case of either constant material properties or zero kinematic
hardening the standard hypothesis used in isothermal J2-plastic algorithm is

ropoverad
recoverea

triat W—:-all Strf-ail qtr_ﬁl
N =nh = = i (4.94)
T sl N - e

Next step is the evaluation of the yield function at time £, as

Patr = ||Brn]| - \f (60 (8n) — Gat] (4.95)

where ||3,,,|| is obtained using equation (4.92) as

18] = B

T {5 2 S i} "
- (mze (Bny1) + gK(@nﬂ)) vahy o (4.96)

To obtain the final values of the plastic multiplier ;% and of the inter-
mediate temperature 8,11 the following system of equation must be verified:

f A (’Yn+1 )en+1) =0
gn+1 (’Yn+1)9n+1) =0

—
=
o
=

~

where function gni1 (Y75, ©,41) is given by

g1 (70, On11) = T (700, 8m01) — (077 (B ¥%]% (498)

Observing that both equations are non-linear a local Newton-Raphson
algorithm can be used to find the solution. The linearized system of equation
results in

{ ... OASP| . AASE | 46 - 0
A ”+1 -+ a—| dy + 50 do =0
T a1 P nk1 (4.99)
g g
gn+1+x: dy +_;)n d® =0
Y lng1 % In+1
with initial conditions
fa) — Qbrial 4 100
Y+l T Vi T U

B
+
—
Il
o
o~
i
[ ——
o
=
—
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Taking into account that the material properties must be actualized to the
current temperature at each iteration, the iterative process is the following:

A8© = 0
Ay = 0
loop
E
AS;?H + & dry*-1)
Dy
d@(k) — n+1
IASE |
99 |,
o
Ppy1 + g_@| detk-1)
d (k) _ n+1
g 50
87 n+41
AWt Agk o goik)
AEFD = AylR) 4 gy )
end_loop
(:)n+1 = é::j_ail + A@
Yot1 = Ay
Update database
Let’s first update the plastic variables as
- —trial
Ent1 = Ent+1 + Yat1Dnp1 {4.103a)
Cnt1 = Z—ﬁl — Tnt+1llp+1 (4.103b)
: 2
én1 = f;ﬁl + Tnt1 \v/_g— (4.103c)
then it is possible to evaluate the viscous strain tensor as
v v Af i 0 up vy
Ent1 — Ep + T+ At ldev (€n+1) —Ent1 — EnJ (4104)

Finally, using the intermediate temperature ©p41 compute the volumetric
thermal deformation ef, | {On1) as

e = 3 [0‘ (én»kl) (én+1 - eref) —a(8,) (6, - @,.ef)]



100 TIME INTEGRATION OF THE COUPLED PROBLEA

+ (67 (0n) — €7 (6,)] (4.105)

The deviatoric stress fields and the hardening stress tensors are computed as
follows

8

B T( trml+A
Snyl = At) G (64 ntl
\
+1)

Tt'rml (

) é (é”‘H) trial
)

A 1Nno N
Tn+1Tint1 (= 1Joa)

Qnt1 = "‘g ((:)n+1)Cn+1

K(é 1) ria 2 ~
= Wf%q:}-kll =+ EK (e'ryl-l) f)’n+1nn+]_ (4106b)

Gotr = ¢ {En11,Onp1) (4.106¢)

so that the total stress tensor can be evaluated as

Tni1=Pr+1l + Snia (4.107)
where the pressure is given by
p'n.+1 = k (é ) (en+1 BZ+1) (4. 108)

Limit cases
It is interesting to show in this section the simplifications that take part in
the model when the limit cases are considered.

1. Liguid behavior. In this case the condition is fs = 0. As a consequence
parameters A and p are given by

/\n+1 =1 (4109&)
pntr =0 (4.109b)
8o that the viscous parameters transform in

(A '|1ﬂ9\

7P = 0o (4.110b)

v
|

Il
-3
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and the viscous and visco-plastic multipliers follow as

The result is that no plastic increment can occur

P = e (4.112a)
G = (4.1120)
gn-}-l = gn (41120)

and the final viscous strain tensor is given by

ytrial

Enpy = dev(gpi1) — €5, = dev (Eny1) — 7P (4.113)

he stress field results in purely viscous deviatoric model so that

Ont1l = Pny1l + 8, (4.114a)
Pri1 = k (Ong1) (€ns1 — hyy) (4.114b)
e
Sutl = LA:_)_ [dev (€ni1) — 3 — &3] (4.114c)

where the thermal deformation ef , is given by

eZ_H =3 [a ((:)n+1) (énJrl - eref) —a(8,) (6, — @ref)]
(67 (Onr1) — €7 (€,)] (4.115)

and the intermediate temperature ©,,, is evaluated assuming the re-
striction on the evolution of the elastic entropy.

2. Mushy zone and no plasticity. Consider a temperature fleld that verifies
the condition ©g < © < O, and suppose that no plastic effects will
occur, that is $,.1 < 0. This is the case of a visco-elastic model in
which the viscosity and the shear modulus are respectively given by

B =n (4.116a)
e
G = 7 (4.116b)
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The viscous strain tensor is computed as

e, ="+ At [dev{epy1) —ef — &) (4.117)
n+1 n T+ At n n
where parameter 7 is given by
n ((:)n-l-l)
7= Mg (0 (4118
2 Bop) ® O )
The stress field results in
Optl = pn+1]- + Sp+1 (4119)
Pt =k (Ony1) (enyr — €2, (4.120)
LT AN VAN "f‘l‘l/ N 7
T - =
Snp1 = p— AtzG (Gnﬂ) [dev (€n+1) — e — ¢l (4.121)

and the thermal deformation €f_; is given by
e?z+1 =3 [CE ((:)n+1) ((':)n+1 - @ref) - (60) (@o - emf)]
+[e7°(8,) — e (0,)] (4.122)

and the intermediate temperature ©,..1 is evaluated assuming the re-
striction on the evolution of the elastic entropy.

3. Solid behavior. In this case f;, = 0 and an elasto-viscoplastic model
is recovered. The consequence is that the purely viscous strain tensor

must remain fixed
=Y - {4 10aY
bn+1 - Cn \"t.léo)
and the deviatoric stress tensor is computed as
Snt1 = 26 (Ony1) [dev (Ent1) — — e (4.124)
where the isentropic return mapping algorithm is used to evaluate the
viscoplastic strain €7,
4.4.4 Isothermal algorithm
Let’s consider now the isothermal algorithm used either to compute stresses

PR Vi, MU SRS TRy ARty R B iy MR Y RPRGUIUN, [ ST AP, [N YOI I
il e meciliaiiiCal pliase O1 all iISounerinial Operator Spiiy, Or 1O update tie

internal variable in the thermal phase of both splits proposed.
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Trial state (kinematics)

According to the elasto-plastic operator split,

trial

el = €1 FoiiNan (4.125a)
¢ = gtridl 0P g (4.125h)
wntl »nt1 intl1**n+l \ bl
i 2
ban = &0+ 7:3—1\/; (4.125¢)
the elastic trial predicior for the plastic variables is computed as
ptriot p 1 p wp

Ent1 = E, + —3' (S - 1) (En - En—l) (41263’)

; 1

i

::rtl = Cn + E (S - 1) (Cn - Cn—l) (4126b)

. 1
vt:+all = &t 3 (8 = 1) (& — &n1) (4.126¢)

The intermediate temperature is the temperature at the beginning of the
time step due to the restriction on the temperature evolution, so that

GCni1 =6, (4.127)

{ Eur,nal =g At trial
n+1 m n+1
° () " (4.128a)
. = rea. trial
strial — 2G(8,,) [dev (Eni1) — &5 —€npy ]
and the result is
trial vipmal ]
A s 2 e -]

where the relaxation time 7 is given by

= nu (@n) — n(@n) fS (@n)
2G(0n)  2G(0a) A(82)
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Trial (generalized) stresses

Using the trial values obtained for the internal variables it is now possible to

compute the trial generalized stresses as follows

P = £ (02) [ensi — ¢ (04)]

trial _ = up irial ,Ut'riul
Smi1 = 2G{©y) [dev (en+1) — & —Enn ]
T _ trial
_ 0 (AN (o (e ) _ 0P 0]
= r Atau O j [wcu \Entl) — G,n+1 c,nJ
. 2 ,
trial __ trial
Qn+1 = _gK (©n) n+1l
trial trial
or1 = —K; ( n+1)

where K, is given by
K (67%) = 1000 (8n) = 00 (Bn)] [1 — exp (—6&35)]
H (@)
and finally, the thermal deformation is computed as

¢ (0,) = 3[a(0) (0, —Bry) — a(6,) (8 — Orer)]
+ [em (@n) — e (60”

that in this case it is also its final value.

Trial yield function

The trial yield function is computed as

2
t 4 trial trial
ot = |~ 2 e (O — ]
where the trial back-stress tensor is given by

trial trial trial
i+l = Sl T Untr

If ®iriat < 0 then the trial state is the final intermediate state,

(4.131d)
(4.131c)

(4.132)

(4.133)

(4.134)

(4.135)
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g, = e (4.136a)
n+1 1
2 v trial
er, = sngl (4.136b)
Cot1 = Hlll (4.136¢)
bot1 = &Y (4.136d)

otherwise, if @Zi“f > 0 the plastic corrector must be applied. A standard
isothermal return mapping can be used due to the constrain on the temper-
ature field.

Isothermal return mapping
In this case the unit normal to the yield surface is given by
trial trial trial

) s —q
S+ . 1 LTI
1Pntr]]  [ISa1 — Dest]|

in fact, it results

[ T A 2 ’val | jal
1+( 2G (O, +—K(€)n)> g =gl (4138
{ T4 At ) 3 ”ﬂn+1“ +1 +1 )

ol H trial - : :
where it is possible to see that vectors 3, ,; and B.% have the same direct

]
and the difference is in the value of the norm

Using the above expression the yield function at time #,,; can be evalu-
ated as

ria T 2 2
Ppypr = bewll a (mZG (6") + §K(@n)> 731—1—1

+\/§ [Gn+1 — Gn) (4.140)

The plastic multiplier 4,7, is obtained by solving the non-linear equation

gni1 (Voh1) =0 (4.141)
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where function g1 (¥2h,) is given by
VP

a AP Y (VP [P Y A ! 3
gnt1 (1) = Qo (Vi) — [77(€n) ] (4.142)

Using a local Newton-Raphson the plastic multiplier ;% is obtained as

A’Y(O) = 0
loop
& = — Py
T Tae
9 |yt
ANEFD = AyE) 4 gy (R}
end_loop
sl = Ay

Update database

The plastic variables are updated first, as

trial

Enil = Ehyr T YariBlng (4.144a)

Cort = CI — varinup (4.144h)
- [2

by = gty %H\/ 3 (4.144¢)

so that it is possible to evaluate the viscous strain tensor as

U _ v
Ept1 =€yt

T AL [dev (€ns1) — e)F,; — €2 (4.145)

Compiite stresses

"The deviatoric stress fields and the hardening-like stress tensors are computed
as follows

.
T+ At

2 w2
_gK (©n) nr = 4ty + EK (Bn) Yni1Dny1  (4.146b)
Gnt1r = q(&ny1) (4.146¢)

trial
Spt1 = nt1

2@ (@n) Yn+10n41 (4146&)

Qnt1
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so that the total stress tensor can be evaluated as

U'n+1=pn+11 + Sn+1 (4147)

where the pressure is given by

Prt1 =k (On) (€ns1 — €fyy) (4.148)

4.5 Phase-change integration

In the literature there are many approaches to integrate the phase change
contribution: among others the so called entalpy methods [Comini-74], the
methods based on the apparent capacity [Salcudea-86], [Salcudean-88] and
finally the source methods {Dusimberre-45], [Roph-82].

In this work the rate of latent heat Ln+1 at time ¢,4, is computed as the

rate of change of the latent heat function L (©) as
L (en+1) - L (en)
At

This proposal is attractive because the rate of released (or absorbed)
latent heat L,y is consistently computed:

Lpir = (4.149)

o for any time step size At used ;

e for any number of phase changes NPC considered;

¢ for any solid-fraction functions f® (8) chosen.

A possible alternative is the following

:@' (ST f4 150
bt (% of S ~ntl Ve louy
d@ |n+1

Due to fact that the latent heat function is a stepwise function then it

results
0 if e >0,
dL _ dfs‘ _ dfs .
Eln+1 =t EIT&I B t e In+1 ! 95 <0< @L (4151)
l 0 if © < Bg
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so that % ol # 0 only if the temperature ©,4; is included in the inter-
vals (g, ©;) in which the phase change occurs, eventually only at the phase
change temperature Og;, = O = Og for an isothermal process [Celentano-94].
This is a strong restriction because a very small time increment must be used
to capture the phase change and the total amount of latent heat released
L= J L dt is not ensured.

It must be observed that this alternative becomes useless when the phase

change process tents to be isothermal, in fact, % — o0 and © — 0. Tt is not

the case when Ly, is computed as ge—“'"—lmu-@i‘l in fact its value it is always
included in the range [0, L/ Af] .

Finally, the expression for the consistent tangent operator C*¢ due to the
phase change is computed as

drL dr
ax kil
0 o
C}"c — n+1l e+l (4152)
Lon—La . dL]
l Ae de |n+1

It is possible to observe, that even if it exists a latent heat contribution
in the evaluation of the residual forces its consistent linearization is often
useless so that it is impossible the convergence procedure. To avoid that
case a secant value is proposed and it is used only when the tangent value is
useless.
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Chapter 5
Time Integration of the

ring on T, and on the numerical integration scheme to be applied on that
surface [Laursen-98], [Cancun-99]. Conceptually the idea behind the nu-
merical algorithm follows the procedure introduced for the buik continua
so that a product formula strategy is used leading to an isentropic and
isothermal operator splits of the governing equations [Armero & Simo- 1],
[Armero & Simo-92].

5.1 Local evolution problem

Consider the following homogeneous, first order constrained, dissipative, local
problem of evolution defined at the contact interface ['D,

Z.= A, (Z,Z,,T') on D x[0,T]

(6.1)
Zo(t)=Zoo on  TO o

along with
Fc:Af‘cGC (Zc: I‘c) on P(l) X {G’ T] (5 2)

T. (to) = I-‘c,o on &

where the set of primary independent variables Z. and the set of internat
variables ', are defined as

Z. = (5557 (5.33)

1NQ
iU
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670, ¢l (5.3b)

With these definitions in hand, the operators that specify the governing
equations of the frictional thermo-mechanical model can be defined as

[ 5 [(@2+Q9) + D]

A.(Z,Z,T,)={ O\ 1 ! (5.4)

5 ¢, ther

and

! B(I) (tTC!)qC: C)
_ abt”f =
G.(Z.,T,) = o0, (t% 0. 0.) (5.5)

86,

5.2 Operator splits

In analogy with the formulation introduced for the solution of the bulk con-
tinua, an additive operator split of the vector fleld A.— A(1)+A Y is con-
sidered. Both the isentropic and the isothermal operator splits wiil be com-
pared. It will be shown that also in this case the critical restriction defined
via the a-priori stability estimate is not satisfied when the standard isother-
mal operator split is used braking the underlying dissipative structure of the
original problem [Laursen-98].

5.2.1 Isentropic operator split

Consider the following additive isentropic-based operator split of the vector
field A, as follows

AC_ Aglzse + AE_'ZZSE (56)
where the vector fields A‘(:lzse and Agse are defined as
A (Z,Z,,T [0
c,ise( y Heo c) - i 0 (57&)
1
(2 J (_)_ [(an + Qg)) + Dc,mech]
A:_ei ise (Z) Zc’ Fc) = ¢ 1 (5-7]3)
l @CDC, ther
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and consider the following two preblem of evolution

Problem-1 Problem-2
ZC_ Atlzse (Zi Zc’ Pc) Aélise (Z’ Zm Fc) (58)
=G, (Z,2Z,T,) _%G (Z,2,,T.)

La,ng into account that the operator bpub pLUpuaeu must be a.ppucu
together with the isentropic split on the bulk continua, then it is possible
to observe that Problem-1 defines a mechanical phase at fixed entropy S, =
8¢ 4+ §7 =0 and Problem 2 \deﬁnes a thermal phase at fixed configm;a?ion

Denoting by L‘“’ and I'¢ ) the flow generated by the vector fields A, ..., &
1,2, astraightforward computation shows that the following estimates holds

d ={1 —_ ~ o o
—Cﬁ'b\‘) - .//. ;‘:Ch V- ji(l) ilznech oy = U (0.8}
d 2
Zisz - @(2) mech+D§m)w) dv
S (p@ @
»/1"(1) 6&2) (D mech + Dc,cond) das S 0 (5gb)

Thus, the isentropic operator split, including the interaction at the con-
tact interface, preserves the underlying dissipative structure of the original
problem. Therefore, unconditionally stable algorithms consistent with the

full coupled problem can be obtained merely as the product of two uncondi-
tionally stable algorithms consistent with each phase.

5.2.2 Isothermal operator split

The usual isothermal operator split can be obtained considering the following
additive split

A= AL AL, (5.10)
where the vector fields Affﬁw and A;‘;SG are defined as

1 (5.11b)

&
I 1 Qu) 4 Q,(f’) + Do, mech — H fc]
l EDC, ther
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Within this operator split, two problems of evolution follows

Problem-1 Problem-2
Z=A),,(2,2,T,)  Z=AY, (2,2.T) (5.12)

C, 1380 ¢, 180

I‘C_’YCG' (Z) Zcﬂ Fc) I‘C_rYCG (Zi Zcﬂ rc)

Problem-1 defines a mechanical phase at fixed temperature for both the
bulk continua and the contact interface while Problem-2 defines a thermal
phase at fixed configuration.

Denoting by Z:* and T'™™ the fiow generated by the vector flelds Ai :so, a =

1,2, a straightforward computation shows that the following estimates holds

d—tL(l) = / DY . dv + / ( Y et gy
O \ Lrre
» D), dS + fr . (1 - W) HM 43 £ 0(5.13a)
d O (o @) ‘
EL( ) = / @(2) (Dmech + Dcond) av

(-

O (o (2)
fu) @(2) (Dc mech + ‘Dc cond) ds

- / ( i )ch(?) dS £0 (5.13b)
] GC

The contribution of both the structural elasto-plastic heating and the
frictional contact heating to the evolution equations of each one of the sub-
problems arising from the isothermal split, breaks the underlying dissipative
structure of the original problem [Cancun-99].

It must be pointed out that the frictional contact heating term only ex-
ists if a temperature dependent hardening-like behavior is taken into account
(see eq. 3.67b). Therefore, if a constant frictional coefficient is assumed in
the analysis of the frictional contact problem both the isentropic and the
isothermal split proposed satisfy the a-priori stability estimate [Laursen-98).
Moreover, the isothermal split is in any case unstable due to the elasto- plastic

0r Qi
‘heah"g term obtained in the bulk continua for mulation [A |[AATINEIC o Oiiio- JLJ ,

[Armero & Simo-92].
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5.3 Time-discrete Contribution to the Weak
form

The frictional contact contribution to the weak form of the momentum bal-
ance equation can be conveniently expressed as

Gelnypr = (69N np1, N net) py + (00105 070 nt1 ) poy (5.14)

where the time-discrete expressions for Sgy ny1 and 8€, 41 can be found in

[Tanreen & Qiman-01] and tharefars will not he aivan hera
[LEUrsen & Slmo-vij and Lnereiore wii nct e given nere.

The contribution to the energy balance equation results in

| /&9(1) o0 N _/s® 0@ \ (5.15)
(e In+1 ntir %cn‘H/I‘(l) \ ntlr ¥c n+1/1‘(1) \ /

In what follows, the expressions for normal pressure 2 51, the tangential
traction i7q ny1and the heat fluxes ngv)l ﬁwl, k = 1,2 are evaluated for both

the isentropic and the isothermal aleorithms
L0€ ISCHLICPIC and il 1Sounermas aigOTriLams.

5.4 Isentropic Algorithm

This algorithm consists of a mechanical and a thermal phase. In the mechan-
ical phase the normal pressure ¢y n+1 and the tangential traction tr 41 are
computed to be used in the evaluation of the contact contribution to the
weak form of the balance of momentum equation.

The thermal phase is necessary to compute the heat fluxes Q(k) frial k=

cn.+1
1,2 and the frictional dissipation D et ny1, and to update the internal

1011a1 (15511 1 c

varlable of the contact problem.

5.4.1 Mechanical phase (isentropic split)

The evolution equations of the frictional contact problem are solved using
the same strategy introduced for the solution of the thermo-plastic problem
in the bulk continua. In fact, it is possible to cbserve that the regularization
of the frictional constraints produces a constrained system of equations very
similar to that obtained for the plastic case. The solution is so achieved
through the introduction of a frial state (freezing the irreversible slip and
hardanimeg raanarnaal Fallasnd bhar o fodatinm ol sodeicm smrmmssn fn anfaeea £
LIl UICLLLLLE, LUDPULJDC} LLIUWEAL DY @ T CEEUTEWE TCLUW LTI P BT LU TLIIUICS L1

contact constraints [Laursen-98], [Cancun-99].



114 TIME INTEGRATION OF THE CONTACT PROBLEM

Trial state (kinematics)

According to the elasto-plastic operator split introduced for the solution of
the plastic problem, consider the trial state

A = g (5.16a)
y::il = Cen (5.16b)

The trial temperature at the contact interface is obtained solving the
following equation

G ! !
S (O3, (o) — 82, =0 (5.17)
Observe that if a linear thermal softening is assumed, it results

o, = 8., (5.18)

Trial (generalized) tractions

The normal contact pressure is obtained as

1 (QN n+1)2 — (gN n)2 .
- € f
tN npl = 9 N INmil— N n l gN n+1 7é gNn (519)
€n (gN ns1) if gyn+1=gN=

while the tangential contact traction and the hardening variable are evaluated
according to the trial state as

et = €1 Map (951 b1 gq’?iﬂwl) (5.20a)
quﬁJ = - Z !U'P @irﬂ1 Zﬁl)p (5.20b)
Trial slip function
The trial slip function is computed as
B = &, (b e, B0 0, ) (5.21a)

- ||bt¥zfi|'1||'ref COE erﬁl] tN nt1 (5.21b)
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where it must be pointed out that the frictional coefficient u, is computed
at time t, according to the constraint on the plastic entropy evolution

P — QP = —
8P i1 = 5P, — o = const = o (Ocn) (5.22)
If ¥7iel | < 0 then the trial state is the final intermediate state,
PO _ 7 a trial
Irnel = 9Tl (5.23a)
_ trial
Cc nt+l — ¢ ntl (523b)
— trial
@c w41 ec nt1 (523C)
otherwise, if ®ial, he plastic corrector must be applied
Mechanical isentropic contact return mapping
To obtain the final values of the plastic multiplier v, 1 and of the interme-

diate contact temperature 9, 41 the following system of equations must be
verified:

@, (7c n+1 O, n+1) =0
’ 5.24
{ ASE i1 (Cong1s Yene1) =0 (5.24)
where AS? .., is given by

ASS a1 (Ocni1s Yont1) = cn+1 - Sen (5.25)

and the slip function at time t,,; is obtained as

B nt1 (Yens1, Ocng1) = @121-:'&!_1_ ET Yentl

+ [Q’c nt+l T qzrfq,ﬁl] tN i+l (L26)

A ocal Newton-Raphson algorithm is used to find the

8
. . .
f equations. The linearized system results in

AR a il (5.27)

¢ int1 6_6)"«'
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and the iterative process is the following:

ALY = 0
My =0
loop
oA e |
ASe .+ 222 gy
ek — _ N lna
¢ BASE
BGC intl
od _
gt + 55" dofF
dy) = — __nil
oe 8%,
3% ntl
Ae¥) = Al | del®
A (k;-!—l) . A (EY . 3 (k\
Ay} = Avy" +dyy
end_loop
Ocnp1 = @fﬂl + AQ,
Yent1l = Ach
starting from the initial conditions
6r::'n+1 = ir;i;ﬁl (528&)
Yenyr = 0 (5.28b)

Update database and compute contact traction

The internal variable are updated as usual as

tal
9:11’1 ?z+1 = gg(:;f;[a + 7e n+1n? ntl (5.29&)
Cenyl = :‘:T;cﬁl + Ye nt1 EN ni1 (529]3)

where the normal to the slip function 7. 4 is computed as

af  rtrial
o _ o trial Mn+1 tTﬁ n+l

e 71 Centl T
ttr'ial Maﬁ ttrml
Teontl n+1 T 8 n+l

Py
[
[
[

=
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Finally the generalized contact tractions are evaluated as

. - {8 8\ PN
iTantl = €r Mag \95" e+l — g%';H_l) (0.31a)
Genyl = — y\ »u'p c n+1 Cc n+1)p (531b)

5.4.2 Thermal phase (isentropic split)

In this phase the internal variables are updated to the final value at time ¢,,,.

starting again from the initial step value at time #,. The goal is to obtain
the heat fluxes Q((:k) » k = 1,2 and the frictional dissipation D

tn
+ e, mech n41 W

evaluate the contributlon to the weak form of the balance of energy equation.

Trial state (kinematics)

Both the plastic slip and the hardening variable are initialized at the initial
values

p o trial

T nt1l = ng (5 )
it = Gom (5.32b)

The trial temperature is evaluated according to the isentropic operator
split as

; cE 7 e?:za’l ? frial Se Tial Tial
orsy, | Fon CELGH) “ % _ gy g (o

where & trial value of the heat fluxes Qﬁkﬁ?al, k =1,2 at the contact inter-

face, either for the conduction or for the convection case, is given by

[ H (om0 (0%, -6
Qe = or . (5.34)

RS V4 RS
L) (k) trial
l héony (e n+l — eg n+1)
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Trial (generalized) contact tractions

The normal contact pressure ¢y n11 and the trial contact traction ¢, | are
respectively computed as

l (gn n+1)2 — {gn n>2

a1 =9 2" gnnp—gna 9N nit # n (5.35)
€n (gn nt1) i gvnt1=9gnn
and
. ol
% 1 =€ Mag (95 s — BT (5.36)
Finally, ¢7%, is given by
m
et = =3 (B (G (5.37)
p=1
Trial slip function
The trial slip function is computed as
‘1’?%“11 = & (tN ntls t%ri:lnﬂ’ tﬂ“ip @?;cil) (5.38a)

5 L — [0 (O324) — 4324] oy <0 (5.380)

where in this case the frictional coefficient u, is computed at time ¢, ac-
cording to the trial temperature @g";‘fﬁl

RN A% LIN <l Lellll)

If @irial, < 0 the trial state is the final state, that is

m v trinl
p o irzal

9rar1 = Gran (5.39a)
Conrt = G0 (5.39b)
@cn+1 = @?;ﬁl.l (539C)

otherwise, if %%, > 0 the plastic corrector must be applied.
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Thermal contact return mapping

The frictional return mapping results in the solution of the following non-
linear system of equations

i ('Yc ntls O, n+1) =0 (5.40)
L Gentl (’ch+1y®c n+1) =4 ) ’
where the slip function at time £, is computed as
trial
éc n+1 ('A}"c n+41s ec n+l) = r‘}\::&q — €7 Yenti

+ [QC nbl — q?i’i’l] IN nt1 (5.41)

while function g ni1 (Ve nt1: Oc nt1) 15 Obtained as
Se ntl (¢ nt1,7e n+1) - Sep
At
fom o :
- {Qg 1)1+1 (@c n+1) + Qt 1)1+1 (@c n+1)}
_Dc, mech nt1 (@c ntls Ve n+1) (542)

Gentl ('Yc n+1y 9, n+1) = ec n+l li

where in this case it appears the frictional dissipation term given by

D¢, mech nt1 = %Anzl.uo (@c n+1) IN nt1 (5-43)

The linearized system of equations results in

( LOol gy 0%l e g
Ge nil A Yo+ T c =
7l 36l . »
o®, 5, (5.44)
Depnt1 + ) A9, =10

n41

dvy. +
n+4-1 860

and the initial conditions
trial
Oent1 = @crrtﬁi—l (5.
Yentl = 0 (
The iterative process is the usual:

ABF) = 0
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AP =0
loop
Ag. | _
e nt1 + agc d’y.gk 2
d@(k) - _ Yelny1
¢ dge |
66C"|11.+1
od _
Qg1 + BGC d@gk 2
d,_v(ls) - _ € lnt1
e a(bc
aﬁy‘? n+1
AR — AQW 4 Jo®
Ay = Ay® 4y
end loop
Ocpy1 = @‘C’"ﬂl + AB,
Yentl = A'Yc
Update database and compute {generalized) contact tractions

The internal variables are updated first, as

Frosr = Tt Yent1 M (5.46a)
(c ntl = é‘r‘;,ﬁgl + Ye nt1 I&'N n+1 (546b)

being

aff irial
Mo T
/-’m'al a s trial

VI’.VFQ: n+1 Iv‘l'rH-l t%gzﬂ—l

o . xirial __
e n+l — ng n+l —

(5.47)

so the tangential contact traction and the hardening conjugate variable result
in

rany1 = €r Maﬂ (gg’ nt+l gg"g,-}q) (548)
m
Gentl = _Zr’-'p(:cn—i—l) (36 n-i—})p (549)
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Heat flux and frictional dissipation

According to the values of the contact pressure and temperature obtained,
the heat fluxes szkv?u +1» £ = 1,2 at the contact interface results in

k k
£027:u (@(ngl-l - 99 TL+1)
and the frictional dissipation is given by

Dc,mech ntl = ’YC::—I Ho (@c n—H) N a1 (551)

5.5 Isothermal Algorithm

The isothermal algorithm follows the same steps indicated for the isentropic
algorithm but in this case the constraint will be on the evolution of the
temperature field at the contact interface.

5.5.1 Mechanical phase (isothermal split)

The following steps will solve the mechanical phase in the hypothesis of an
isothermal split.

Trial state (kinematics)

Let us start assuming a trial state for the inelastic slip and the hardening
variable

a trial

Pt = 0% (5.528)
Tt = lenm (5.52b)

In the other hand let us fix the contact temperature to its initial value
Gc nt+l = ec ” (553)

due to the restriction enforced by the isothermal algorithm
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Trial (generalized) traction

As usual compute the normal pressure as

l e (gN n+1)2 - (gN n)2 lf g 7& g
tNa =Y 2 0 gyne—gnn L HTINR (5.54)
L €N (gN n+l> if N ntl =GN =n

then evaluate the frictional tangential traction using the trial value chosen
for the plastic slip

rial irial
810 1 =Er Mag (65 s — 5550 (5.55)

and in the same way for ¢/a, | as

gty =~ Zup Ocn) (Crit))P (5.56)

Trial slip function
Compute the trial slip function ®¥%%, using the trials above defined

Fwtrial ial trial <
cntl &, UNnI—l;[’Tan+11(Icn+17UCn) \JJdia

(657t s = [0 (Ben) = @ieli] tnnin SO (5.57b)

Il
£

As usual if 37, < 0 then the trial solution is the final intermediate
solution, that is

B = & (5.582)
Cn: ntl = zrrl:ﬁl-'l (558b)
@c ntl = ec n (558C)

otherwise, if 7%, > 0 the plastic corrector must be applied.

Mechanical isothermal contact return mapping

The frictional return mapping results in the solution of equation
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De(Yeny1) =0 (5.59)
where the slip function at time %, results in
_ trial
De nt1 (')’c n+1) = @c nt1— ST Yen+1
trial
+ [qa nt+l = qc n+1] tf\l' n+1 (560)

A local Newton-Raphson algorithm can be used to find the solution start-
ing from the initial conditions v, n4y = 0 as follows

A0 n
Ay = U
loop
e — _ Dentn
Ic 8‘1’0
a’Yc n+1
M = Ay +dy®
end_loop
Yentl = A

Update database and compute generalized traction

First, let us update the internal variables as

Tigl
For = G+ Yentnin (5.612)
Centt = (gt HVent1tnnp (5.61b)

where also in this case it results
‘ Maﬁ firial
trial n+1 T B n+tl
Mentl = Monyl = —F——— (5.62)
LTaat MUV tLT'l.aL
\/ Tentl n+l YT 8 ntl
Then, compute the tangential traction with the final values of the internal
variables

trant1 = €1 Mg (9’7’6“ ntl T 9’%’1“) (5.63a)

Qen+1 — — Z Hp (ec n) ( Cc n+1)p (563b)
p=1
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5.5.2 Thermal phase (isothermal split)

This phase is exactly the same as in the isentropic case with only a small

qroeo EYSRR ISR IR S A Firnotinn -~ - 1 [ i
difference in the evaluation of the function g p+1 (Ye nt1, e nt1), in fact in

this case it must be taken into account the frictional contact heating H,{il,
so that

Sgn 6cn y fen _Sen
Je ntl ('ch+1,ecn+l) = ®cn+l[ +1( -HA,Yt +1) < +1:l

- [QS‘?‘L«H (Ocnt1) + Q£2,)1_,_1 (0, ”“)l

L

_Dc,int -1 (6(_- ntl) Ve n+1)
+H£-C§-1 (ec n+1; Ye n+1) (5.64)

Finally, note that the initial value of the elastic entropy is the final value
of the mechanical phase. To avoid this fact it is also possible to solve the
isothermal phase using the equivalent form of the energy equation defined at
the contact interface in which the main variable is the contact temperature

field.



In this chapter the Galerkin projection of the weak form of both the balance
of momentum and the balance of energy equations given in the continuum
case is presented.

Moreover, in the context of the general mixed approximation based on
the three-filed Hu-Washizu variational principle, the projection procedure
referred to as B-bar method is presented.

6.1 The Galerkin projection

In the context of the fnite slomont meth i

AAL VLAY UA/LIVUGAAU UL IJJ.J.\J JUH‘IJU\/ Crlirovib 11 Ln}
obtained through the Galerkm projection of
dimension sub-spaces v!* C v, and yg C vo.
T at rnanaidar +lhia cbamdand co il ot _ 1 INEL AR 1.
LY \.chuu.cj. the standard npa,um.i discretization 0 = U= e ana let
N, € v} C H'(Q) and Ng € v C H' () be the general 1nterpolat10ns of
the displacement and temperature field on a typical element €2,, so that

d, be
the

ca
ontinmmu he finite

Q
B
[+
&
CD

u*l = N,U (6.1a)
I, u \9-28)
Viut|, = B,U (6.1b)
and
0", = No® (6.2a)
= Bg® (6.2b)

where B, and By are spatial derivatives vectors.
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If Galerkin method is applied then the test functions 77 and 9 associated
to the dlsplacement and temperature field, u |Q and ©* | q.> lespectively,

are gi"v'cu oy

n N, U (6.3a)
dn = N, U (6.3b)
v'n = B,U (6.3¢)
and
9 = Ng® (6.4a)
6 = Ngbé® (6.4b)
V4 Bo@ (6.4c¢)

©

The space and time discretized form of the balance of momentum equation
results in
(B, 86U an+1) G|nJrl (6.5a)

where the full discrete term associated to both the external load and the
contact interaction [Laursen & Simo-91] is given by

Gl = (NLOUDDE )+ <N 5U,tn+1>m

(59N nrls EhY n+1>1-(1) + <5£n+1>tTa n+1> ) (6.6)

where the space and time discrete expressions for g% .., and 8¢, Jfl can be
found in [Laursen & Simo-91] and therefore will not be given here.

The full discretized form of the energy equation results in

SE _QF _
<N@ 6@ @n+1 ( n+1AtSn+1) + Ln+1 L > + (B@5® 'ICTL+1 venJrl)

At

B G® | n + if isentropic
G? Ieil if 4sothermal
where the full discretized thermal load for an isentropic split is
given by
a? l'n+1 = (N@ {0, Rn+1) + (N@ 6@, Dmechm+l ) - <N9 608, (7"+1>BQP

1k 2) h 2
(01 Q%) o — (921,000, (6.8)

(6.7)
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or
&P ="~ (Nes©,HE,) (6.9)

. . - D ’_. - +l
6.2 Mixed approximation: B-bar projection
method

In what follows we consider a general mixed approximation based on the
three-filed Hu-Washizu variational principle. It is possible to show that this
formulation is equivalent to the projection procedure referred to as B-bar
method [Simo-85]. The present approach provides a variational framework
for B-bar type projection methods in the general non-linear situation in which
pressure may depend on the strain deviator an non-constant elasticities are
permitted.

Let consider the standard discretization @ = Uivz ‘F'fIL Q. in the subspace
H" ¢ H' () so that over a typical element ), one has the general interpo-
lations

N
uhQ = EN,—u; (6.10a)
e
I=1
N
L — N\ r
viutly = > By (6.10b)
I=1

where Ny = Np(x) are the standard shape functions. 1t is also possible
to consider the interpolations for the spherical and deviatoric parts of the
symmetric gradient operator

tr u Uy

TN

E \\ = q'ru(l
Vi, ) = divg

N
AR b¥%y
Q. J LT
I=1

dev

TN

S’
Il
()=
=]
Y
o
<
c
-
—
=)
—
—
>
o

Vsuh!A

$2¢

since b¥* and B¢ are given in term of the projection operators I* and I,
see (2.136a), (2.136b),according to the expressions

b = 1.B; (6.12a)
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1
B = 1 :.B;= ;18 by (6.12b)
B = I“:B,;=B;0B¥" (6.12¢)
B; = B¥gB (6.12d)
8o that it is possible to express Vsuhlﬂ
1
viutly, = 1@ gdiv (w'], ) +dev (Vo) (6.13)
| N N
—_ é L 1 ® b'lJOtuI + L Baequ
I=1 I=1
N N
= Z_J (B;AL (35] _B';ev) uy = LBIuI
I=1 I=1

&
©
&
=
o

Next step is to consider the volume and pressure approximastion:
ph, respectively, in the subspace K" ¢ L2 {Q) so that over the typical element

QU UVOL ullt Ly pila.

£2, one has the general interpolations

N
Pl = D Vb =00 (6.14a)
k=1
N
k=1

whe =0(x)=[68;- -85 andp = p (x) =
[p1p2- - Pyl

Note that no inter-element continuity is enforced on " and p* and as a
result of this discontinuous approximation, the discrete versions of variational

__________ [0 1 A0 N\ 1401

equations | £.140C), \A JAOO) is

/ q" [div(u") — 6" dV = 0 - V" e K" (6.15a)
/ A" [~ph + %tr (Eh) v = 0-Vple K" (6.15b)

80 tha it is pme'h‘ﬂ to ehmmaue t
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q [ ¥(x)[div (uh) - ¥ (x)]-0dV =0 (6.16)
Q.
that is
['.T.I\v-/h\ ."_fr,-..,,\,u,u PR P
j ¥ (x) aw(u”) aV —j ¥ (x)®W¥(x) -0dV (6.17)
Qe Qe
and if we define
e s i
He (x) =j ¥ (x)®P(x)dV (6.18)
then it is possible to obtain 8 (x) as
1
0=-—— ¥ (x) div (u*) dV 6.19
He (X) Qe ( ) ( ) ( )

and taking into account that Gh!ﬁ = ¥ (x) - 8 then the fields 6" at element
level result in

| Z‘I’(X) [
'% " He (x) jne

Following the same procedure in the case of the pressure field p* we obtain

J S S Y

h
8 @iy (u V

v (6.20)

—

Ay
* A

L——

Mo = 2 g L () av 6.21
p|QE—He(x)er (X)BT(O') (6.21)

It is now interesting the definition of a new divergence operator div () as
follows

%(-):I‘i’e((’;))/ W (x) div (-) dV (6.22a)

e

and taking into account that div (\) = 31 b¥ () , see (6.11a), it leads to
the definition of E;Dl as

He (x) Jg,

so that in mixed formulation, operators (6.12h)

ified as
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=vol 1 —vol

B = 318k (6.24a)
!

Bi® = B,oBw (6.24b)

= —=wol

B; = B, "gB™ (6.24c)

Elimination of the field variables 6" and p" at element level yields a re-
duced residual involving the modified discrete gradient operator B, . Re-
markably, pressure field drops out from the formulation. Substituting (6.21)into

the discrete version of the variational equation {2.146a) the remdual at ele-
ment level R*| can be computed as follow

R, = i dev (&) : dev (V°n") aV + [ pdiv (n") dV — G|,
[ BN ; — 1
= j ldev (") : dev (V“'r)‘) + tr' ”) dw n")J v — Glg,
N
— T‘;n [ 'V/Bde"\Tde,b f:’;h\ 4 [E'"Dl\TltT. /uzh\ 1-] IS o
‘I/;Trrjﬂet\fj W) TARr ) g JW Yla,
N
= Y u- f (Bdﬂ’@ﬁ”‘”) [de’u (@) + <tr (&) 1] dv - Glg,
I=1 Qe ]
N e
= th f (B;) &*aV - G|, (6.252)
I=1 S
where the stress field & is given by
. ow@E

—
=2
[\
[=3]

-

Observe that to compute the symmetric gradient V’u we can make use of
the operator By, in fact taking into account the discrete divergence operator
(6.22a)the approximation for the volumetric strain #* can be expressed as

N
N T —vol

b,y (6.27)

]
1
—



MIXED APPROXIMATION: B-BAR PROJECTION METHOD 131

so that the strain field #* results in

gt = eh—!-%é)h 1 (6.28)
= V' (6.29)
= dev (Vu") +1@ %ﬁ (u") {6.30)
_ (B‘}” aB ) uh =B;u" (6.31)

Tinally +ha avnraccinn for the Aomalabo
€L um.uy, LIIGC CTAPICOOSIVIL UL LIS CGULIDISLELLL

from (6.25a)

N N
s Z Z’Th . K}J Uy (632&)

where

Ky= [ [B) . B, av (6.33)
Jo, J R

Looking at the final result it is possible to observe that the only differences
between a mixed formulation and the standard one are that gradient operator

B; must be replaced by B; and the stress field must be computed taking into
account the definition of the strain field above defined.

Example 1 A possible application is the Q1/P0 mized element. In this case
a constant pressure field is assumed

¥(x)=1— H°(x) =Vol°

so0 that the volumetric strain field 0 is given by the relation

R -

jf @v (u¥) dv
Qe

N
1 1 _\—\Euoiu
lo. = Vore 2w
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where the resulting B-bar volumetric operator is

I

g by
Vole Jne

and consequentially

=vol —vol

BI = - ]. ®b[
Bdev — B fa B'z;o[
—uol

B;=B;" @ B

Finally the pressure field p* is given by

6.3 Integration Rules

In the context of the finite element method it is possible to say that the
Gauss integration rule is the most popular numerical integration technique
[Bathe-81], [Hughes-87] and [Zienkiewicz-91). For this reason most of the
numerical integrals that appear in the formulation of the coupled problem
presented can be solved using the Gauss integration rule. However in the
solidification processes, two are the situation in which this procedure could
fail:

 in case of very high temperature gradient, typically at the beginning of
the cooling process at the contact interface between the part and the

mould;

o when the movement of phase change front is to slow to be captured by
the sample points selected for the Gauss integration rule.

=2
o+
‘7‘

In the following the strategies adopted in

OLLIOVLIE LIS

problems are introduced.
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6.3.1 Integration of the thermal problem

To introduce this phenomenon let us assume the following test: consider the
cooling process defined by a cylindrical cast-iron specimen in a sand mould.
The initial temperatures are 1000 °C and 20 °C degrees for the part and for
the mould, respectively. Typical material properties have been assumed for
the specified materials. The finite element mesh is composed by 30 2-node
linear elements.

If a standard Gauss integration rule is used a number of oscillation can
be observed in the temperature distribution along the cylinder radius: typ-
ically an overshoot or an undershoot effects could appear, see figure (6.1a).
On the other hand, using a Lobatto close integration rule the temperature
oscillations disappear and the solution is much closer to the real one: see
figure (6.10).

Mathematically, the difference between the use of an open or close inte-
gration rule is due to the evaluation of the matrix A that define the sys-
tem of equation A - x = b that solves the problem. It can be demonstrate
([Ciarlet & Raviart-73], [Kikuchi-77)) that if matrix A is of non-negative type
then the solution of the transient problem does not present any oscillation.
Matrix Ay n=lay] is of non-negative type if the following conditions hold:

woa LU IVLVAVYLLE CCLIGILICIS N01G!

N
w >0 Vi=1,.,N
,;M = (6.34)

It is possible to show that for a 2-node linear element the elemental mass
matrix M*® that contribute to form the assembled system matrix A assumes
the forms:

1. Mg, =

he [ 2 . . .
open = - [ 1 é } in case of an open (Gauss) integration rule or

hE
2. M§,.. = = [ é (1) ] in case of an close (Lobatto) integration rule,

where h® is the element length. Therefore, only the close rule forms a
non-negative type matrix that avoids the oscillation in the final solution.
The result can be easily extended to a 2D or 3D finite element mesh. Figure
(8.1) clearly shows the advantages of the close integration rule compared with
the open rule.
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:
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Hw

Figure 6.1: Cooling of an indefinite cylinder. (a} Open integration rule (b)
Close integration rule.
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Remark 8 A possible alternative to the close rule is the use of ¢ lumped
mass matrix to force the conditions of non-negative type matriz.

6.3.2 Phase change integration

Another possible situation in which the standard Gauss integration rule can
fail results in the integration of the phase change contribution. In fact, this
contribution presents a discontinuity, situated along the phase change front,

due to the proper definition of the latent heat function. This problem be-

comes much more compli i i m i
comes much more complicate to be solved if an isothermal phase change is as-

sumed. In the literature it is possible to find different procedures and element
technologies to deal with this kind problems (see: [Crivelli & Idelsohn-86),

[Qinernas 001 on I [Qé by o2 T 71N
[DteVeN-04] and OLoril €v du. o7,

Lt

— Jitae

Figure 6.2: Space integration of the latent heat function.

Keeping in mind the final goal of this work that is the numerical simula-

11E K Llld 1CaL SIITY

tion of industrial processes, it can be observed that typically the liquid and
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the solid temperatures are not so close. Hence the phase change process for
an industrial casting material is generally not isothermal so that the tran-
sition is slower that is easier to be integrated. For this reason in this work
a standard open/close integration rule is adopted: the only peculiarity con-
sists in the number of sample points assumed. Figure (6.2) clearly shows the
advantages of this choice to capture the position of the phase change front.



Chapter 7

Numerical Simulations

The formulation presented in the previous chapters is illustrated here in
a number of representative numerical simulations. The goal is to demon-
strate the unconditionally stability and good accuracy properties of the pro-
posed staggered algorithms in the framework of infinitesimal strain thermo-
plasticity. First a numerical assessment of accuracy and stability behavior of
both the isothermal and the isentropic operator splits is presented in the con-
text of quasi-static and fully dynamic cooling analysis of a thermo-elastic and
thermo-plastic pressurized thick-walled cylinder. Next, an interesting test to
show the evolution of the frictional coefficient is presented. Finally, the goals
are either to provide a practical accuracy assessment of the thermormechani-
cal model or to demonstrate the robustness of the overall coupled formulation
in a number of solidification examples, including industrial processes.

The computations are performed with the finite element code COMET

developed by the author together with Prof. Carlos Agelet de Saracibar

and Prof. Miguel Cervera, project supported by the International Center for
Numerical Method in Engineering ((“ ILMN.E. \ Newton-Ranhss

athad

J.IMPLJ.DUJ.J. lllCIJJ.J.ULl’

combined with a lme—search optlrnlzatlon procedure, is used to solve the non-
linear system of equations arising from the spatial and temporal discretization
of the weak form of the governing equations. Convergence of the incremental

iterative sclution procedure was monitored by requiring a tolerance of 0.1%

in the residual based error norm.

[y
<]
~
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7.1 Cooling of a Pressurized Thick-walled Cylin-
der

This problem corresponds to the cooling of a pressurized thick-walled cylin-
der. This example has been used by several authors as a test to compare the
performance of different time-stepping algorithms [Argyris & Doltsinis-81],
[Simo & Miehe-92]. The goals are to provide a numerical assessment of ac-
curacy and stability behavior showed by the isothermal and the isentropic
operator splits. Different analyses have been carried out using either a ther-
moelastic or a thermoplastic constitutive model in the context of quasi-static
and fully dynamic analysis. It has also been considered the case of strongly
coupled problem multiplying the thermal expansion coefficient o by a fac-
tor of 6 in the quasi-static cases and by a factor of 3 in the fully dynamic
cases. Plane strain conditions are assumed in the axial direction, so that a
unit band of standard bi-linear isoparametric axisymmetric finite elements
has been considered.

P, = 200 Ninm? ~f

Figure 7.1: Cooling of a pressurized thick-walled cylinder. Initial geometry
and boundary conditios.

Figure (7. 1\ depicts the initial geometry, as well as the preseri

i ul 20 LT il geellielly,

ary condltlons The inner and outer radii are By = 100 pnm] and

200 [mm], respectively. The initial temperature of the cylinder is 593 [K],

while the environment temperature is 293 [K]. The values of the material
brd

- A 11
p‘""p""*‘“ used in the numerical simulations are summarized in tables 171
and [7.2).

n
Il
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Density DENSI
7.8E-9 N s2/mm?
Poisson ratio POISS

0.3 -
Flow stress YEINI
320.0 N/ mm?

Table 7.1: Cooling of a pressurized thick-walled cylinder: constant material
properties

Young modulus YOUNG
213 K 221.9E4-3 N/ mm?
673 K 183.9E+3 N/mm?
Thermal expansion coeff. ALPHA
2713 K 1.19E-5 K1
673 K 1.33E-5 K-1
Specific capacity SHEAT
273 K 0.34E+9 mm*/ s°K
673 K 0.39E-+9 mm?/s*K
Conductivity CONDU
273 K 45.29 NJ/sK
673 K 30.42 N/sK

Table 7.2: Cooling of a pressurized thick-walled cylinder: temperature de-
pendent material properties
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Different (constant) convection coefficients are considered for the inner
and outer surfaces, respectively given by hy = 1.16 [N/mm s K} and hy =

D
0.01 [N/mm s K]. The simulations are performed applying a pressure P, =

200 [Pa)] at the inner surface of the cylinder.

The results obtained in case of quasi—sta,tic analyses are collected in figures
(7.2 —7.3) and (7.4 — 7.5) for the thermo-elastic and thermo-plastic consti-
tutive response, respectlvely. Figures (7.6 —7.7) and (7.8 — 7.9) show the
results for the fully dynamic case assuming both the thermo-elastic and the
thermo-plastic constitutive behavior. In each of these figures, it is presented
the radial displacement and temperature evolution at the inner and outer
surfaces obtained using the isothermal and the isentropic operator split for
both the weakly and strongly coupled cases.

As expected, the results show that for strongly coupled problems the
isothermal split leads to a completely unstable behavior ending with a blow-
up of the sclution, while the isentropic split provides always the right solution.
Despite this fact, for weakly coupled problems the two splits provide practi-
cally the same solution. This behavior has been shown for both quasi-static
and dynamic analyses, as well as for both thermo-elastic and thermo-plastic
Tesponses.

These results demonstrate the limitations of the isothermal split in the
analysis of strongly coupled problems. The isentropic split, on the other
hand, circumvents entirely this limitation while retaining good accuracy and
leads to an eflicient implementation, improving considerably over the cost of
the monolithic scheme.

7.2 Flat Sheet Sliding Test

This example is taken from [De Souza Neto et al. 95] and is concerned with
the numerical simulation of flat sheet sliding tests. The experimental tests

are as follows. A steel flat sheet is clamped to the sliding table. A prescribed
normal force is then applied to the tip of the tool material (SKD-11). The

tip is kept fixed during the experiment to avoid rotation and ensure high

LSS Aiipri

precision in the measurement of the friction coefficient. Once the normal
force has been applied, the table slides 300 mm driven by a hydraulic cylinder.
After sliding, the normal force is released and the table returns to its initial

~A
position. The normal force is then reapplied and the cycle is repeated a

number of times.
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QUASI-STATIC cooling of a THERMDELASTIC pressurized cylinder
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Figure 7.2: Quasi-static cooling of a thermo-elastic pressurized cylinder. Ra-
dial displacement (a) and temperature evolution (b) at the inner and outer
surfaces, using both the isothermal and the isentropic operator splits, for the
weakly coupled case.
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QUAST-STATIC cooling of a THERMOELASTIC pressurized cylinder (alpha x 6)
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Figure 7.3: Quasi-static cooling of a thermo-elastic pressurized cylinder. RRa-
dial displacement (a) and temperature evolution (b) at the inner and outer

surfaces, using both the isothermal and the isentropic operator splits, for the
strongly coupled case.
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QUASI-STATIC cooling of a THERMOPLASTIC pressurized cylinder
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Figure 7.4: Quasi-static cooling of a thermo-plastic pressurized cylinder. Ra-
dial displacement (a) and temperature evolution (b) at the inner and outer
surfaces, using both the isothermal and the isentropic operator splits, for the
weakly coupled case.
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QUASI-STATIC cooling of a THERMOPLASTIC pressurized cylinder (alpha x 6}
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Figure 7.5: Quasi-static cooling of a thermo-plastic pressurized cylinder. Ra-
dial displacement (a) and temperature evolution {b) at the inner and outer
surfaces, using both the isothermal and the isentropic operator splits, for the
strongly coupled case.
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DYNAMIC ceooling of a THERMOELASTIC pressurized cylinder
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Figure 7.6: Dynamicic cooling of a thermo-elastic pressurized cylinder. Ra-
dial displacement (a) and temperature evolution (b) at the inner and outer
surfaces, using both the isothermal and the isentropic operator splits, for the

weakly coupled case.
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DYNAMIC cooling of a TBERMOELASTIC pressurized cylinder (alpha x 3)
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Figure 7.10: Flat sheet sliding test. Finite element mesh and sliding cycle. (a)
Initial configuration and application of the normal force; (b) Sliding process;
(c) Release of the normal force and (d) return to the initial position.
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Young modulus YOUNG
158.40E+-3 N/mm?
Poisson ratio POISS
0.3 —
Initial yield stress YEINI
199.1E+3 N/mm?
MAximum tensile strength ~ YEFIN
319.3E43 N/mm
Table 7.3: Material properties assumed for the GA steel
Young modulus YOUNG
158.40E+3 N/ mum?
Poisson ratio POISS
0.3 —
Initial yield stress YEINI
169.2E+3 N/mm?
MAximum tensile strength  YEFIN
310.0E+3 N/ mm?

Table 7.4: Material properties assumed for the EG steel

‘I'wo zinc coated sheet metals, typically employed in the manufacture
of automotive body shells, have been considered: Galvannealed (GA) and
Electrogalvanised (EG) steel sheets. The mechanical properties for the GA
and EG steel sheets are shown in tables [7.3] and [7.4]. Figure (7.11a) shows

the hardening plasticity law of the GA and EG steel materials.

Frictional behavior was modeled as a polynomial function of the frictional
hardening ¢,

m
pC)=pat ) pplF (7.1)

=1
The presence of a hard surface coating, difficult to remove, in the GA
steel sheet leads to a progressive softening of the frictional behavior. In con-
trast with this behavior, the EG steel sheet experiences an initial softening,
due to flattening of microasperities, followed by a substantial increase of the
friction coeflicient, due to the removal of its relatively soft zinc coat. The
coefficients of the frictional hardening law, for a frictional dissipation (. mea-
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Figure 7.11: Flat sheet sliding test. (a) Hardening plasticity and (b) frictional
hardening laws for the GA and EG steel materials.
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Ho B M2 H3 H4 M5
GA | 0.178 -0.666E-2 - - - -
EG j0.157 -0.315E-1 0.104E-1 -0.821E-3 0.280E-4 -0.410E-6

Table 7.5: Frictional hardening law for GA and EG steel sheets. Coefficients
of the polynomial function for friction. i i

LY IIOLIL

tion measured in KN /cm

uicdd 12 AP RS

sured in [K N /mm)], for the GA and EG steel sheets are shown in table [7.5].
Frictional hardening behavior for the GA and EG steel sheets is shown in
figure (7.11b).

The sheet initially measured 400 mm long, 100 mm wide and 0.8 mm
thick. The tip of the tool measured 10 mm long and 10 mm wide, with an

1uil cll

inner radius of 2.5 mm at the bottom corner of the right edge. Then the
tested surface at the experiment measured 300 mm long and 10 mm wide.

For simplicity, only 30 mm of the sheet length has been considered in the
numerical simulation and a plane strain state has been assumed. The sliding
cycle has been repeated 20 times for different compressive constant normal
forces of 3.92, 2.94, 1.96 and 0.98 KN applied to the tip of the tool.

A mesh of 111 four noded quadrilateral elements has been used for the
discretization of the tool. The sheet has been discretized by two layers of 60
continuum elements and the nodes of its left edge have been considered as
constrained. A mixed Q1/P0 finite element formulation has been used. The
table has been considered as rigid.

At the beginning of a sliding cycle, the tip lies at 2.5 mm from the left
edge of the sheet. Starting from this initial configuration and after the normal
force has been applied, a relative sliding of 20 mm between the table and the
tip is incrementally imposed. This ensures an approximately 10 mm long
evenly worn region on the sheet surface (between 12.5 mm and 22.5 mm
from the left edge). Then the normal force is released, the tip is lifted up
and returned to its initial position, thereby closing a cycle. Note that a steady
state frictional force will occur when the entire surface of the tip contacts
the evenly worn region of the sheet. The finite element mesh as well as the

description of a shdmg cycle is shown in figure (7.10).

Frictional contact constraints were regularized by means of penalty method
and the normal and tangential penalty parameters were taken as €y= 5.0E+
11 [N/m®| and €r= 1.0E + 11 [N/m?] , respectively. A typical loading
cycle was achieved in 30 time steps: 5 steps to applied the normal force, 20
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steps for sliding and 5 steps to remove the normal force.

Figures (712 -7.13) and (7.14 - 7. 15) show the tangential forces ob-
tained in the numerical d.hdJ.yblb of the buulng tests, ublng GA steel and EG
steel sheets, respectively, at different constant normal forces. In order to
compare the results obtained in this work with the (average) experimental
and numerical results given by {De Souza Neto ef al. 95], it is important to
observe that one must consider only an average value within the central part
of the sheet for each pass, in the evenly worn region, disregarding the val-
ues at the beginning and at the end of each pass, where the distribution of
the friction coefficient is not uniform. A detail of the wear profile in the
sheet is depicted in figure (7.16), for the GA steel and for a normal force of
0.98 KN. The figure clearly shows an evenly worn region in the central part
of the sheet, between 12.5 and 22.5 mm from the left edge, while the wear
at the edges is not uniform.

In (7.12 — 7.13) and (7.14 — 7.15), it is clearly evident the different wear
evolution experimented by the GA and EG steel sheets. For the GA steel, due
to the softening of the friction coefficient law, the tangential force presents a
local minimum within a pass at the central part of the sheet, in the evenly
worn region. In contrast, for the EG steel, particularly for high normal
pressures, the tangential force at the central part of the sheet moves from
a local minimum towards a local maximum within a pass, according to the
frictional softening/hardening behavior. Remarkably, a significant hardening
is observed for the EG steel at high normal pressures, while a. slight softening
appears at low normal pressures. These results clearly show that a classical

frictional Coulomb law, using a constant friction coefficient, would not be
able to capture this behavior, leading to useless inaccurate predictions

Capiulec Lals bellaviar, 1ea41ng wotiton dlatlulave pIieCICLIONSs,

The tangential forces predlcted by the numerical analyses, for both GA
and EG steel sheets and for all levels of constant normal force, agree well with
the experimental and numerical (average) results given by [De Souza Neto et al. 95].

7.3 Cylindrical Aluminium Solidification Test

This example, taken from [Celentano-94j, is concerned with the solidification
process of a cylindrical aluminium specimen in a steel mould. In this case,
the main goal is to show the accuracy of the full coupled model proposed in
this work for a solidification analysis. In fact in this case the numerical re-
sults will be compared with the experimental values obtained by [Nishida-86].
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Figure 7.16: Flat sheet sliding test. Wear profile.

The experimental apparatus is shown in figure (7.17). The experiment con-
sisted of casting commercial purity aluminium into an instrumented mould.
Thermocouples were placed in the mould wall and in the mould cavity. The
thermocouple locations are shown in figure (7.17). Two quarz rod were in-
serted into the mould to measure both the displacement of the solidifying
cylinder and the mould deflection.

The geometry of the problem is shown in figure (7.18). Assumed starting
conditions in the numerical simulation are given by a completely filled mould
with aluminium in liquid state at uniform temperature of 670°C. The initial
temperature of the mould is 200°C. A thermo-viscoelastic constitutive model
has been used to simulate the material behavier of both the aluminium cast-
ing and the steel mould. Most of the material properties for the aluminium
have been assumed to be temperature dependent, while constant material
properties have been considered for the steel mould: see tables [7.6] , [7.7]
and [7.8].

The external surfaces of the mould as well ag the upner surface of the

cxLelial SUullaccs Ol LIIC 1110 cil as LIC Uppe 1l LAl

casting metal have been assumed perfectly insulated. A constant conduc-
tion heat transfer coefficient h,, = 2.30 N/mms °C and a gap dependent

r'nn‘ror-+1r\ﬂ_rr\rqln+1nn coefficient hetwoen the alumininm nart and the ctesl
1010 COCLILCICIT, DELWECIL LT auiIniuifn part ald i Siei

mould is given in table [7.9].

Only gravitational forces have been assumed. Spatial discretization of the
casting cylinder and the mould has been done using a finite element mesh of
axisymmetric 3-node triangles. Numerical simulation was done up to 90 secs.
of the solidification test using a time increment of 1 sec. A close integration
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Figure 7.18: Cylindrical aluminium solidification test. Geometry.
Density DENSI
2.65E-9 N s*/mm?*
Poisson ratio POISS
0.37 —
Viscosity ELVIS
1.0E+7 N s/ mm?®
Latent heat LATEN
3.95E+11 mm?/ s>
Ligiud temperature TLIQU
659 °C
Solid temperature TSOLI
660 °oC
Table 7.6: Constant material properties assumed for the aluminium

ment
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Young modulus YOUNG
0.0°C 69.3E+3 N/mm?
659 °C 25.6E+3 N/ mm?
Thermal expansion coeff. ALPHA
200 °C | 1.47E-5 o1
659 °C' 1.47E-5 o1
700 °C | 1.38E-5 °c-1
Specific capacity SHEAT
350 °C 1.40E+9 mm?/ s* °C
659 °C 1.50E+9 mm?/ s% °C
Conductivity CONDU
100 °C | 234.46 N/s°C
200 °C 226.08 N/s°C
400 °C 221.90 N/s°C
600 °C 20777 NJs°C
659 °C | 209.34 N/se°C

Table 7.7: Temperature dependent material properties assumed for the alu-
minium speciment

Density DENSI
7.8E-9 N s*/mm?
Young modulus YOUNG
196.0E+3 N/ mm?
Poisson ratio POISS
0.3 —
Thermal expansion coeff.  ALPHA
1.2E-5 °C!
Conductivity CONDU
45.64 .c]\vr/ B OC
Specific capacity SHEAT
0.5E49 mm?[ s° °C

Table 7.8: Constant material properties assumed for the steel meould
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Gap [mm] Convection-radiation coefficient [N/ mm s °C]
0.0 2.30
1.0E-2 2.20
2.0E-2 1.40
6.0E-2 0.35
1.0E-1 0.30

Table 7.9: Convection-radiation coefficient between the aluminium part and
the steel mould

rule has been used to deal with the overshoot problems in the solution of the
thermal partition.

Figure (7.20a) shows the temperature evolution at the casting center,
casting surface and mould surface for a intermediate section. A typical tem-
perature plateau due to the release of latent heat during solidification can be
seen in the casting center point of this section up to 15 secs. approximately.
Figure (7.20b) shows the evolution of the radial displacements at the casting
and mould surfaces for the chosen section. The difference between the two
curves gives the gap distance evolution. Temperature and air gap evolution
predicted by the model compare very well with the experimental results. A
data sensitivity analysis has shown a strong influence of the heat convec-
tion coefficient between the casting part and the mould in the temperature
evolution.

Figure (7.21) compare the results obtained applying both the isothermal
and the isentropic splits for the solution of the coupled problem considered.
It is possible to note that the curves obtained are superposed verifying the

L1V,

accuracy of the isentropic solution in case of phase change phenomena.

7.4 Solidification of a RENAULT Clio Crank-
shaft

et 1 121
The goal of this analysis is the validation of a real industrial solidification

problem that is a RENAULT Clio crankshaft (see figure (7.23a)). In this
case the analysis is concerned with the solidification process of a cast-iron
specimen in a green-sand mould. Geometrical and material data, as well as
experimental results, were provided by RENAULT. Figure (7.23D) shows a
view of the finite element mesh used for the part, consisting in 13151 4-noded
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Figure 7.24: Solidification of a RENAULT Clio Crankshaft. Thermocouples
positions.

4.5:+08
igast 20°1C —e—
dipsct 500°1C ~4+—
4e+08 1000--
L oot upset 1200°0C -
3.5c+08
3e+08 e
& 2.5c+08 /
o
@
g /
B 2408 ¥ AR oy
+ .
I ey, .~
L.5c+08 ¥ trhs
s B S s N
lc+08 -
/’ 7
5
Se4l7 fofit
')(-«* e e e
JiEeEgEIONgennapEEne ARG
L] 30 100 130 200 250 300 350 400 450 500
TIME [4]
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