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Summary

In this paper a numerical model for the analysis of coupled thermomechanical m ulti-body frictional cortact
problems at finite deformations is presen ted. The m ulti-body frictional coiact formulation is fully developed
on the continuum setting and then a spatial (Galerkin projection) and temporal (time-stepping algorithm)
discretization is applied. A contact pressure and temperature dependent thermal con tact model has been
used. A fractional step method arising from an operator split of the go verning equations has been used to
solve the coupled nonlinear system of equations, leading to a staggered solution algorithm.

The numerical model has been implemented into an enhanced version of the computational finite elemen t pro-
gram FEAP . Numerical examples and simmlation of industrial metal forming processes sho w the performance
of the numerical model in the analysis of coupled thermomechanical frictional contact problems.

1. INTRODUCTION. MOTIVA TION AND GQALS

Numerical analysis of coupled thermomechanical frictional contact problems has been one
of the research topics of main in terest over thelast years. Coupled thermomechanical
frictional contact problems arises in many application fields such as metal forming processes,
crashw orthiness and projectile impact, among others. In spite of importan t progresses
achieved in the computational mechanics, the large scale numerical simulation of these topics
continues to be now adays a very complex task due mainly novadays a very complex task due
mainly to the highly nonlinear nature of the problem, usually involving nonlinear kinematics,
large deformations, large inelastic strains, nonlinear boundary conditions, frictional contact
interaction, wear phenomena,arge slips and coupled thermomec hanical effects. During
the last decade, a growing interest on these and related topics, has been shown by many
industrial companies, suc h as automotiv e and aeronautical, motited by the need to get
high quality final products and to reduce man ufacturing costs.

Mathematically, the numerical analysis of frictional con tact problems amoutts to finding
the solution of an Initial Boundary V alue Problem (IBVP) within a constrained solution
space. Consideration of the w eak form of momehum balance equations induces limita-
tions on admissible v ariations in the tangent solution space, imposed I the physical con-
straints, leading to variational inequalities (VI). See, for example, Kikuchi & Oden (1988)
and Duvaut & Lions (1972). A regularization of the frictional con tact constraints, using
for instance penalty or augmen ted Lagrangian methods, allers to bypass the need to find a
solution within a constrained solution space and pro vides a very convenient displacemen t-
driven frictional contact form ulation. The penalt y method has been used p Oden & Pires
(1984), Cheng & Kikuchi (1985), Hallquist, Goudreau & Benson (1985), Simo, Wriggers &
Taylor (1985), Curnier & Alart (1988), Wriggers, Vu Van & Stein (1990), Belytsc hko & Neal
(1991), Laursen (1992) and Laursen & Simo (1992,1993) among others. On the other hand,
the augmen ted Lagrangian method has been used, for example, ly Laursen (1992), Simo

©1998 by CIMNE, Barcelona (Spain). ISSN: 1134-3060 Received: October 1996


https://core.ac.uk/display/296524163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

244 C. Agelet de Saracibar

& Laursen (1992), Laursen & Simo (1992,1994) and Laursen & Govindjee (1994). Further-
more, the displacement-driven form ulation of frictional contact problems, allws to widely

exploit the framew ork developed for computational plasticit ySee, for example, Simo &

Hughes (1994) and Simo (1994), for an excellent presentation of current topics and last de-

velopmen ts in computational plasticit y. In particular, return mapping algorithms detoped

for plasticity can be applied to integrate the frictional traction. Frictional return mapping
algorithms ha ve been used by Giannak opoulos (1989), W riggersyWan & Stein (1990) and

Laursen & Simo (1993,1994), among others. Enhanced Coulomb frictional models, using a

non-constant friction coefficient have been used, for example, by Wriggers (1987) and Ow en
et al. (1995). Numerical models for coupled thermomechanical frictional contact problems

have been used by Wriggers & Miehe (1992,1994) and Wriggers & Za varise (1993) among
others. A fully nonlinear kinematics formulation of frictionless contact problems, including

the derivation of the algorithmic con tact operators, was developed p Wriggers & Simo

(1985) for 2D linear surface elements and by Parish (1989) for 3D linear surface elements.

An extension to frictional con tact problems for 2D linear surface elemenis was provided by

W riggers (1987). A general fully nonlinear kinematics formlation of m ulti-body frictional
contact problems at finite strain was first developed on a continuum setting for 3D and 2D

contact surfaces, by Laursen & Simo (1993). A new frictional time integration algorithm

for large slip m ulti-body frictional contact problems at finite deformations has been recemly

proposed by Agelet de Saracibar (1995a). An extension of the fully nonlinear kinematics

form ulation to accoutt for wear phenomena was given by Agelet de Saracibar & Chiumenti

(1995).

Coupled thermomechanical problems tipically in wlve different time scales associated
with the mechanical and thermal fields. It is widely accepted that an effective numerical
integration scheme for the full coupled thermomechanical problem should tak e adantage of
these different time scales. These considerations motivate the so-called staggered algorithms,
whereb y the problem is partitioned in to several smaller sub-problems whit are solved se-
quentially. This tec hnique is specially attractive since the large and generally non-symmetric
system that results from a monolithic solution scheme is replaced by much smaller, t ypically
symmetric, sub-systems. For thermomedianical problems the standard approac h exploits
a natural partitioning of the problem in a mechanical phase, with the temperature held
constant, followed by a thermal phase at fixed configuration. As noted in Simo & Miehe
(1991) this class of staggered algorithms falls within the class of product formula algorithms
arising from an operator split of the go verning evolution equations into an isothermal step
followed by a heat-conduction step at fixed configuration. A recent analysis in Armero &
Simo (19922,1992b,1993) sho ws that this isothermal split does not presere the contrac-
tivity property of the coupled problem of (nonlinear) thermoelasticity, leading to staggered
schemes that are at best only conditionally stables. Armero & Simo (1992a,1992b,1993) pro-
posed an alternative operator split, henceforth referred to as the isentropic split, whereb y
the problem is partitioned in to an isentropic mec hanical phase, with total émopy held con-
stant, follow ed by a thermal phase at fixed configuration. It was shown by Armero & Simo
(19922,1992b,1993) that such operator split leads to an unconditionally stable staggered
algorithm, whic h preserves the crucial properties of the coupled problem.

The remaining of the paper is as follows. Section 2, deals with the n umerical analysis of
thermomechanical frictional contact problems. The m ulti-body frictional contact formla-
tion proposed by Laursen & Simo (1993,1994), fully developed on a continuum setting, and
extended by Agelet de Saracibar & Chiumenti (1995) to accomodate wear phenomena, has
been extended now to incorporate thermal effects within a fully coupled thermomedanical
analysis.

In Section 3, the discretization of the initial boundary v alue problem including ther-
momechanical frictional contact constraints is presented. The focuss has been placed on
the time integration of the constrained frictional evolution problem. Two time integra-
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tion algorithms are presen ted. First, the lower Badkward-Difference (BD) method, the
Backw ard-Euler (BE) algorithm. Second, within the Implicit Runge-Kutta (IRK) methods,
the generalized Projected Mid-Point (PMP) algorithm. This algorithm was first proposed,
within a J2 plasticity context, by Simo (1994). See also Agelet de Saracibar (1995b). Both
algorithms are amenable to exact linearization and the algorithmic frictional contact tangent
operators are derived.

The thermomechanical frictional contact model has been implemented into an enhanced
version of the computational finite element program FEAP developed by R.L. Taylor and
J.C. Simo and described in Zienkiewicz & Taylor (1991). Numerical examples and metal
forming simulations are provided in Section 4. Finally some concluding remarks are included.

2. FORMULATION OF THE COUPLED THERMOMECHANICAL MULTI-
BODY FRICTIONAL CONTACT PROBLEM

In this section we present the continuum form ulation of the coupled thermomedanical
m ulti-body frictional contact problem.

2.1 Notation

Let 2 < ngi < 3 be the space dimension and [ := [0,7'] C R, the time interval of interest.
Let the open sets 2(!) C R™#m and 23 C R™i with smooth boundaries 82" and 902
and closures 2 := 2MW U ANM and 2 = 23 UON?, be the reference placement of
two continuum bodies B®Y and B® | with material particles labeled X € 2 and Y € 2®
respectively.

Denote b yp'? : 209 x T — R™m the orientation preserving deformation map of the body
B™, with material v elocitiesV " := 9,¢", deformation gradients F*) := D" and absolute
temperature O : 209 x T — R. For each time ¢ € I, the mapping ¢ € I — @ 1= o (-, 1)
represents a one-parameter family of configurations indexed by time ¢, which maps the
reference placement of body B onto its current placemen tSfFi) : (p,(gi) (BW) C R™4m,

W e will assume that no cotiact forces are present betw een the two bodies at the reference
configuration. Subsequent configurations cause the two bodies to physically contact and
produce interactive forces during some portion of I = [0, 7.

W e will denote as thecontact surface 'V C 902 the part of the boundary of the body
B such that all material poin ts where con tact will occur at any timé € T are included.
The curren t placemen t of the contact surfacd™? is given by v := <,o,(f')(F<i)).

Attention will be focussed to material points on these surfaces denoted as X € I'®
and Y € I'®. Current placemen t of these particles is gien by = = ¢!”(X) € 7 and

y= rpiz) (Y) € ¥®. See Figure 2.1 for an illustration of the notation to be used.

(A) Parametrization of the con tact surfaces Let A% C R~ be a parent domain for
the contact surface of body B®. A parametrization of the contact surface for each body
B is introduced by a family of (orien tation preserving) one-parameter mappings indexed
by time, ¥!? : A® C RMim1 5 RMim guch that I'® = 4\ (A®) and v = ¢!" (AD),
Using the mapping composition rule, it also follows that ¢£i) = 27) o ((]7)

In particular, for any material poin tY € I'® with curren t placemen ty € v(*), there exist
some poin t& € A® such that Y := 1/;(()2) (¢) and y := 1/152)(5). It will be assumed in what
follows that these parametrizations have the required smoothness conditions. Figure 2.2
shows the parametrization map of reference and current placemen t of a contact surface.
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Figure 2.1. Schematic description of t wo interacting bodies at reference and current place-
ments. Reference and current placement of contact surfaces

oY ’}’<2) >
2)_ L2 (2)
i =Py oY

Figure 2.2. Contact surfaces parametrization. P arametrization map of reference and curren t
placement of a contact surface

2.2 Frictional Cortact Constraints

Using a standard notation in con tact mec hanics w e will assign to ehcpair of contact surfaces
involved in the problem, the roles of slave and master surface. In particular, let '™ be the
slave surface and I'® be the master surfac e Additionally, we will denote slave particles
and master p articlesto the material points of the slave and master surfaces, respectiv ely.
With this notation in hand, we will require that any slave particle ma y not penetrate the
master surface, at an y timet € I
Although in the con tinuum setting the sla ve-master notation pla ys no role, in the discrete

setting this choice becomes important.



Numerical Analysis of Coupled Thermomechanical Frictional Contact Problems 247

(A) Closest-point projection of a slave particle onto a master surface. A ttention is
focussed to any slave particle X € I"® with curren t placemen tx := ¢\" (X) € 7¥) and to
the master surface I'®, with particles Y € I'®® and current placemen ty := cpgz)(Y) €?,

Let §(X,t) € ¥ be the closest-point projection of the current position of the slave
particle X onto the current placemen t of the master surfacel’®, defined as

¥(X, 1) =arg uin {llei”(X) - ol ()]} (2.1)
35X, 1) = ol (7) (2.2)

The definition of the closest-poin t projection allows us to define the distance bet wen any
slave particle and the master surface at any time ¢t € L.

Let gn(X,t) be the gap function defined for any slave particle X € I'® and for any
time ¢ € I as (min us) the distance of the current placemen t of this particle to the current

placemen t of the master surfacey? := <p§2) (I"®). Using the definition of the closest-poin t
projection stated above, the gap function gy (X,t) may be defined as

gv (X, 1) = [} (X) — i (T (X, 1)] - v (2.3)

where v : v — S? is the unit outward normal field to the curren t placemen t of the master
surface particularized at the closest-point projection §(X,t) € v¥. Here S? denotes the
unit sphere defined as

S?:={v e R : |lv]| =1} (2.4)
(B) Contact pressure. Let P (X,t) be the first Piola-Kirchhoff stress tensor and

NW(X) the unit outward normal to the sla ve surface”™® in the reference configuration.
The nominal (Piola) frictional contact traction at X € I'V) is given as

tM(X,t) = PP (X,t) NY(X) (2.5)
Additionally one defines the con tact pressurety (X, t) as minus the projection of the nominal

frictional contact traction t() onto the unit outw ard normal to the curren t placemenof the
slave surface n* (X ,t). Then w e can split the nominal frictional con tact as

tD (X, 1) = —ty(X,t) n P (X, 1) + P, tP (X, 1) (2.6)

where P, t") is the projection of ¢! onto the associated tangent plane.
With the required surface smoothness conditions, when the slave particle X comes in to
contact with the master surface, the following relation holds

v=n?(Y(X,1),t) = —nV(X,1) (2.7)

Here n'Y) is the unit outward normal to the sla ve surface at the pointe = goil)(X) and
v :=n is the unit outward normal to the the master surface at the poiit 7 = <p,£2)(17).



248 C. Agelet de Saracibar

Then an equiv alent expression for the nominal frictional con tact traction split is given as

tD(X, 1) =ty(X,t) (Y (X,1),t) + Pt (X, 1) (2.8)

(C) Contact normal constrain ts With the preceding definitions for the gap function
gn (X, t) and the contact pressure ty(X,t) we can introduce the normal constrain ts induced
by the frictionless contact problem.

i. Impenetrabilit y kinematic constrain tThe kinematic constraint induced by the impene-
trability requiremen t can be expressed in terms of the gap functiongy (X, t) as

gn(X,t) <0 (2.9)

ii. Non-adhesion constraint. The non-adhesion constrain t implies that the con tact pressure
m ust be non-negative. Mathematically this condition can be expressed as

if gn(X,t)<0 '

iii. Con tact persistency condition. This condition implies the requirement that the rate of
separation at the contact points m ust be zero for positie contact pressure. Mathematically,
this persistency condition takes the form

tn(X, 1) gn(X,1) =0 (2.11)

The above constraints set of impenetrabilit y, non-adherence and contact persistencycan be
expressed as Kuhn-T ucker complemetarity conditions as

gN(Xat) <0

ty(X,t) >0
tn(X,t) gn(X,t) =0 (2.12)
tn(X,t) gn(X,t) =0

(D) Con vected basis on the master surface Exploiting the geometric structure induced
by the impenetrabilit y constraint through the definition of the gap functiongy(X,t), we
introduce an associated convected basis, suitable for definition of the frictional constrain ts.
The definitions of the con vected frames emanate from the differettiation of the contact
surfaces with respect to the con vected coordinates. Along with the con vected basis, dual
or reciprocal convected basis are defined following a standard procedure. A ttention in what
follows will be restricted to ng,, = 3. Particularization for ng,, = 2 is trivial once the
three-dimensional case has been considered.

Using the parametrization of the contact surfaces introduced above we consider a point
€= (£4,€%) € A® of the parent domain, suc h that

Y =97, y=v ) (2.13)
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A ttaded to each master particle Y € I'® we introduce the convected surface basis E,,(€)
and e, (&), @ = 1,2 on the reference and current configurations, respectively as

E (&) =900(8),  enlt) = pia(E) (2.14)

where (), denotes partial derivative with respect to €. Using the composition map
(?) Lpi 1/)(2) the following relation holds

ea(&) = F2 (97 (€)) - Eo(€) (2.15)

where F( D= Dgo(2) is the deformation gradien t. ~
Let con31der now for any slave particle X € I'¥ the master particle Y (X,t) € I'® such
that satisfies the closest-point projection minimization condition given by (2.1). Then for

some poin t€ := (£1,£2) € A® of the parent domain we have

V(X 1) =9 (€(X,1), 59X, 1) =" (E(X,1)) (2.16)

A ttached to the master particleY (X,t) € I'® we define the convected surface basis on the
reference and current configurations, respectively, as

(X, ) = ELE(X, 1), Tl(X, 1) = en(E(X,1)) (2.17)

LAl

Using the composition map ¢£2‘) = (,oiz‘) o w((]z) the following relation holds

7o = FO (2 (&) - et (2.18)

showing that the surface basis v ectors7"¢/ and 7, are convected through the deformation

gradient map Ft(2) at the master particle Y (X, ).
_ Additionaly, the unit outward normalse™/ € S? and v € S? at the master particle
Y (X,t) on the reference and current configurations, respectiwly, can be defined as

ref ref
ref T T T X Ty

v = VvV = — = (219)
[l 7 x TzchH ’ |7 x 7l

The vectors 77 € T,..+S* and 7, € T,,5%, o = 1,2 span the tangent spaces T}.;S? and
T,S% to the S? unit sphere at v"/ and v, respectively. Here the tangen t space to theS?
unit sphere at v € S? is defined as

T,8% := {6v € R*™ : fv-v =0} (2.20)

The convected surface basis vectors /¢ and 7, a = 1,2, augmen ted with the unit out wrd
normals »"*/ and v, provides local spatlal frames at the master particle Y (X,¢) on the
reference and current configurations, respectively.
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(E) Surface metric and curvature on the reference and current configurations. The
convected surface basis vectors 77¢/ and 7., @ = 1,2, induces a surface metric or first
fundamen tal form on the reference and curren t configurations, defined respectively as

M(xﬁ = 'T(;cf . Tlgcj‘ 9 m(x[j = Ty * T,U (221)

Inverse surface metrics M and m®® are defined in the usual manner. Additionally,
dual surface basis on the reference and current configurations are straightforw ard defined
respectively as
— f — ‘
T,',)if = Maﬁ,’_/;‘e , T = mo‘ﬁ'rﬁ (2.22)

The variation of the convected surface basis along the convected coordinates, together with
the unit normal, induces the second fundamental form or surface curv ature defined, on the
reference and current configurations, as

Ko = Bap) v, Rap = eap(d) v (2.23)

(F) Relative slip velocity on the convected description. We introduce the relative slip
velocity on the convected (reference) configuration defined as

v (X, 1) = Y (X, 1) (2.24)

The relative velocity on the convected description can be expressed in terms of the rate of
the parent coordinates, using the map (2.16),, the convected surface basis on the reference
configuration given by (2.17); and applying the chain rule derivation, as

vy (X, 1) 1= Earl (2.25)
As expected, the con vected relative slip velociy defined by (2.24) or (2.25) lies in the tangent

plane to the master surface at the master point Y (X,1).
The relative velocity on the current configuration can be defined as the push-forward of

the relative velocity in the convected description with the deformation gradient Ft(z), as
vr(X,1) = EP(EX, 1) - 03 (X, 1) (2.26)

The one-form associated to the relative velocity in the convected description is defined as

ref = 2
v; (X,t) = fO‘Maﬁ'rﬁ

ref

(2.27)

while the one-form associated to the relative velocity in the current configuration is defined
as the push-forw ard of the corresponding one-form in the con vected description, as

oh (X, 1) = E9M 5" (2.28)

REMARK 2.1. The definition of v} (X,t) is frame indiffer ent despite the fact that the
material and spatial velocity fields are not. This crucial propert y arises because the definition
of v% (X, t) uses the convected basis. []
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REMARK 2.2. W e note that the definition of the one-form associated to the relativ e
velocity involves the metric M,z at the point Y (X,¢) in the reference configuration, and
not the metric m,p in the current configuration. This is because w e define!, as the push-
forw ard of the corresponding one-form in the con vected description and not as the one-form
associated to the spatial vector vr in the current configuration. This last definition leads to
an increase in the computational cost, due to the complexities involved in the linearization
of the frictional integration algorithm. []

(G) Frictional traction. W e define the nominal frictional tangen t tractiotr(X,t) as
(minus) the projection of the nominal frictional con tact tractiont'™(X,t) onto the unit
normal v, as

tr(X,t) = =PtV (X,t) = t3(X, 1) 7, (2.29)

Additionally the one-form associated to this object is defined as

(X, 1) = —P, "V (X, t) =t (X,t) 7% (2.30)

(H) Frictional constraints With the preceding definitions for the relative slip velocity
and frictional traction, the frictional constraints are introduced as follows:

i. Slip function. Admissible traction space. W e define aslip function ® : T,S? xR, xR, — R
such that the states (t%,ty) € T,S? x R, in the traction space and the internal variable
o € R, are constrained to lie in the closed set of admissible states defined as

E; = {(t},tn, ) €T,S? x Ry xRy : &(ty,ty,a) <0} (2.31)

In particular, the classical friction Coulomb law can be extended to accomodate wear effects
using a friction coeflicien t defined as a function of an in ternal variabley, such as the frictional
dissipation or the slip amoun t. Then the admissible states space is defined by the slip
function:

O(ty, ty, @) = [ltz]| — pla)ty (2.32)
where || - || denotes the norm of its argument and u(«) is the Coulom b friction coefficiet.

ii. Slip rule and internal evolution equation. The slip rule is defined as follo ws

vh(X,t) =0 if &(th, ty,a) <0 (2.33)
v (X, 1) =y py i O(th, iy, ) =0 '
where pf, := (9t?q§(th,tN,oz) and v € R, is the non-negative slip consistency factor. For

the frictional Coulomb law p’ is the normalized one-form frictional traction defined as

b b /(|4
pr = tp/||tz .
Additionally one needs to define an ev olution equation for the internal variablex. As
stated above, one ma y definex as the slip amoun t leading to the following ev olution equation:

&(X,t) =0 if S(th,ty,a) <0

2.34
&(X,t) =7 if Dty ty,a)=0 (2.34)



252 C. Agelet de Saracibar

or, alternatively, one may define o as the frictional dissipation, leading to the following
evolution equation:

&(X,t):=0 if @(ty,ty,a) <0

. D , ] \ (2.35)
&(X,t) ==ty vy =7 [tz if O(ty,ty,0) =0
where the last expression in (2.35), comes out using the slip rule (2.33).
These t wo alternative definitions can be easily accomodated in to a single expression in
the form:

&(X,t) =0 if &y, ty,a) <0

(2.36)

a(X,t) =7 [1-w)+uwltz]  if Bt ty,a) =0
where w € [0, 1] is a constant such that, for w = 0 one reco vers (2.34) and« is defined as the
slip amoun t, forw = 1 one reco vers (2.35) and« is defined as the frictional dissipation, and
additionally for w € (0,1) « is defined as a linear com bination of slip amoun t and frictional
dissipation. In what follo ws, w e will use this single expression for the ev olution equation of
«, allowing to easily reco ver both alternative definitions as a particular case.

iii.  Slip consistency condition. The slip consistency condition states that the rate of
change of the slip function m ust be zero for positie values of the slip consistency factor.
Mathematically this condition is expressed as

v (th, ty,0) =0 (2.37)

The above expressions lead to a constrained evolution problem defined b y the evolution
equations

'U’I}(Xat) =7 pg‘

2.38
&(X,t) =7 [(1 —w) + wllt] 239

subjected to the constraints, expressed as Kuhn-Tucker complementarity conditions as,

0
0
. (2.39)
0

(I) Regularization of frictional con tact constraints As discussed in Kikuchi & Oden
(1988], for instance, solution of initial boundary value problems (IBVP) subject to con-
straints such as (2.12) and (2.39) amoun ts to finding a solution within a constrained solu-
tion space. Consideration of corresponding w eak forms induces limitations on admissible
variations in the tangent solution space, imposed by the physical constraints, leading to vari-
ational inequalities. See, for example, Kikuchi & Oden (1988) or Duvaut & Lions (1972).

Differen t methods ha ve been used to bypass the need to find a solution within a con-
strained configuration solution space. Here w e will use thepenalty method to remove the
restrictions associated to the constrained solution space and enforce the constraints through
the introduction of constituve equations for the frictional contact traction.
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The normal constraints induced by the contact problem are regularized in troducing a
normal p enaltyparameter €y and substituting the Kuhn-Tucker complementarity conditions
defined in (2.12) with the follo wing constitutiv e-like equation for the contact pressure

[t3(X,1) = en{gn (X, 1))] (2.40)

where (-) is the Macauley brac ket, representing the positive part of its operand. Expression
(2.40) can be viewed as a Yosida regularization of the Kuhn-T ucker complemetarity con-
ditions given by (2.12), providing a constitutive-like equation for the contact pressure and
leading to a convenient displacemen t-driven form ulation.

Comparison of (2.40) with (2.12) reveals that now a (hopefully small) violation of the
constraints (2.12) is allow ed, and that the constraints will be exactly satisfied asey — oo.

The regularization of the constrained frictional evolution problem defined by (2.38)
and (2.39) is performed in troducing atangential penalty parameter ez playing the role of
constitutive parameter in the relativ e slip velociy evolution equation. Then the regularized
constrained frictional evolution problem tak es the form:

1
b b b
X, t) = + —L,,t
vy ( )=7pr er T (2.41)
&(X,t) =7 [(1 — w) + wlft[]
subjected to the following constrain ts
P(ty, ty,a) <0
>0
R (2.42)
v Pty ty, ) =0
¥ é(tT,tN,oz) =0

where L, t% is the Lie derivative of the frictional tangent traction along the flow induced
by the relative slip velocity vy, defined as

Lot = ip,m” (2.43)

Comparison of (2.41) and (2.42) with (2.38) and (2.39), reveals that the frictional constraints

are exactly satisfied as ez — oo, in which case the (plastic) slip rate v is equal to the norm

of the relative slip velocity w%. Otherwise, it is assumed that the relative slip velocity

can be decomposed in to an elastic or recoverable part and a plastic or irreversible part.
Introduction of the Lie derivative in the regularized relatiw slip velocity, main tains frame
indifference of the frictional evolution equations.

Using the definition of the one-form relative slip velocity given by (2.28) and the Lie
derivative of the frictional tangent traction along the flow induced by the relative slip
velocity given by (2.43), the componen t form of the frictional tangen t traction evolution
equation (2.41);, along with the in ternal variable evolution equation, takes the form

iTo{ = €r (Moz,@gﬁ -7 pTa)

2.44
& =7 [(1—w)+w|ts] .
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As we have seen above, the regularization of the frictional constraint problem leads to
the following frictional constrained ev olution problem
L.ty =er [vp =7 0, O(ty, ty, a)]
& =7 [(1—w) +wltz]]
B(tr,ty,@) <0, v>0, &ty ty,a)=0
¥ Dty ty, ) =0

(2.45)

Within the context of the product form ula algorithms, africtional operator split of the
constrained evolution problem can be in troduced by means of drial state, defined by freezing
the irreversible (plastic) slip response, i.e. setting v = 0, as follo ws

Trial state Return mapping
‘C’UTtZ" =€r ’U'I} ‘C’Urtibl" = —€r Y at*’T@(tg"atN: O[)
&:=0 &= [(1—w)+ w|jty|] (2.46)
unconstrained @(t?,tN,a) <0,v>0, v @(t;,tN,a) -0

REMARK 2.3.  We point out that here only the regularization of the slip rule has been per-
formed and (2.41) and (2.42) can be viewed as the governing equations of a rate-independent
constrained frictional evolution problem. On the other hand, a Yosida regularization of the
complementary Kuhn-T ucker frictional conditions (2.39), analogously to the regularization
of the complementary Kuhn-T ucker contact normal conditions (2.12), wuld lead to a rate-
dependent frictional evolution equations. []

2.3 Thermal Contact Model at the Contact Interface

A thermal con tact model at the con tact interface is considered, taking into accotuthe
phenomena of heat conduction flux through the contact surface and the heat source term
due to frictional dissipation at the interface.

(A) Heat conduction at the con tact surface The heat conduction flux through the
contact surface 'V can be expressed as

th = ;Llc)(th) = iL(tl\HeG) gG(X7t) (247)

where the heat transfer coefficient at the contact surface iL(tN, ) is assumed to be a function

of the contact pressure ty and the current mean gas temperature 05 := GAG(Q(”,Q(Z)), and
go = §o(OV,0?) is the thermal gap at the con tact surface. The thermal gap and the
current mean gas temperature at the contact interface are defined as

go(X,t) = O (X,t) — 0P (Y (X,1),1)

_ (2.48)
0co(X,t) :=h, OV (X,t) + (1 — h,) O (Y (X,1),1)
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where A, is the relative effusivity (constant) coefficien t of the surfacel™, i.e. the effusivity
of the surface I"") divided by the sum of the effusivities of the surfaces I'™ and I"®.

i. General con tact pressure-temperature dependen t heat conduction modelThe resistance
against heat transfer is mainly due to the lo w percen tage of surface area which is really in
contact. The presence of a reduced set of spots surrounded b y microca vities characterizes
the contact area. Hence heat transfer tak es place by heat conduction through the spots and
heat conduction through the gas con tained in the microca vities. Other effects suc h radiation
betw een microca vities surfaces can in general be omitted since both bodies are v ery close to
each other. Making the usual assumption that both heat conduction mechanisms, through
the spots and through the the gas con tained in the microca vities, act in parallel, the heat

transfer coefficien tiL(Qg, ty) can be expressed as
h(ty,0c) := hs(ty) + hg(ty, ) (2.49)

where BS(tN) is the heat transfer coefficien t through the spots, assumed to be a function

of the contact pressure ty, and ilg(tN,QG) is the heat transfer coefficien t through the gas
contained in the microca vities, assumed to be a function of the con tact pressure and the
current mean gas temperature.

Based on a statistical model and taking into account the dependence upon surface
roughness parameters and Vickers microhardness coeflicients, hardness variation with the
mean planes approac h, the following heat transfer through the spots w as proposedybSong
& Yovanovich (1987):

5 1.25 k mrt 10° e
hs(ty) = =22 (1 62 m”)*cz e (2.50)

g Cy

where % is the mean thermal conductivity, depending on the conductivities of the t wo bodies
being in contact, o is the surface roughness, m is the mean absolute asperit y slope andey, ¢,
describe the hardness variation.

The heat transfer through the gas or liquid con tained in the microca vities is mainly
governed by conduction. This fact rsults from the small height of the microca vities which
do not allow convective flow. Based on this assumption and taking into account the change
of microca vity heiglt by the contact pressure ty, Yovanovich (1981) derived the following
expression for the heat conduction coeflicien t through the gas within the microcsities:

N k
hg(tN,eG) = g (251)
1.36 04/ — log(5.592‘,\:) + Cpcbea

where k, is the gas conductivity, C'p¢ is a constitutive constant for the gas, H, is the Vic kers
hardness and ¢ the surface roughness.

ii. Simplified con tact pressure dependent heat conduction model. For high pressures, a
simplified con tact pressure dependent model can be deriv ed from the abe equations, in
terms of the Vic kers hardnessH, and introducing a contact resistance coefficien th,, and

an exponent ¢, leading to a heat transfer coefficien tiz(tN) given by

h(ty) = heo {;I—N] ‘ (2.52)
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(B) Heat source at the con tact surface The heat source term R'Y. for the contact surface

fric

'V due to frictional dissipation at the contact interface, is assumed to be giv en by

RY. = h. Dy (2.53)
where h, is the relative effusivity of the surface I'™ and Dy, = ||t}p||y is the frictional

dissipation at the contact interface.

2.4 The Coupled Thermomechanical IBVP with Frictional Contact Constraints

W e describe below the system of quasi-linear partial differefial equations governing the
evolution of the coupled thermomechanical initial boundary value problem, including fric-
tional contact constraints. W e will adopt general constitutiv e equations which incorporate
current models of finite strain plasticit y and, in particular, micromehanically motiv ated
models based on a multiplicative decomposition of the deformation gradient, the tangent
deformation map, and an additive split of the local entropy. Frictional contact constraints
will be in troduced using a penalized regularization tec hnique, leading to a constitutive-like
set of evolution equations within the framework of a displacemen t-driven form ulation, and
we will adopt a pressure-temperature dependert thermal con tact model.

(A) Local governing equations. The local system of partial differential equations govern-
ing the coupled thermomechanical initial boundary value problem is defined by the momen-
tum balance equation and the energy balance equation, restricted by the second law of the
thermodynamics. This system must be supplemented by suitable constitutive equations.
Additionaly , one m ust supply suitable prescribed boundary and initial conditions, and to
consider the equilibrium equations at the con tact interface.

i. Local form of momentum and energy balance (reduced dissipation) equations. The
material form of the local governing equations for the initial boundary value problem, the
local momentum and energy (reduced dissipation) balance equations for the body B can
be written as
‘F.)(i) = yv®
PV = DIV[PY] + BY in 29 x1 (2.54)

OWHY = —DIV[Q¥] + R? + DY),

where ¢ : 20) xT — R™= is the deformation map in the time interval of interest I := [0,77],
VO . 20 x T — R™m is the velocity field, p{” : 2() — R, is the reference density,
B® 1 QW xT — R™ the (prescribed) reference body forces, DIV[-] the reference divergence
operator and P'¥ the non-symmetric nominal or first Piola-Kirchhoff stress tensor, @ the
absolute temperature, H*) the entropy, Q" the nominal heat flux, R the (prescribed)
i the internal dissipation per unit reference volume. In addition,

the entropy H® and the nominal stress tensor P are defined via constitutive relations,
typically form ulated in terms of the in ternal energy®”, and subjected to the following

reference heat source and D\

restriction on the internal dissipation Difl)t:

DY =P PO L OOFD —ED >0  in 20U xT (2.55)

int

where F) := D¢ is the deformation gradien t or tangent deformation map.
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The nominal heat flux Q" is defined via constitutive equations, say Fourier’s law,
subjected to the restriction on the dissipation by conduction D) :

con*

| 1 S »
D) = _mGRAD[Q(”] QW >0 in 20 xI1 (2.56)

ii. Boundary conditions. W e will assume that the deformationy(? is prescribed on FS) C
982, the nominal traction ¢ is prescribed on the part of the boundary IV C 9020,
with unit out ward normal field N : I'® — S2? the temperature @ is prescribed on

I (E)“ C 802 and the outward normal heat flux is prescribed on the part of the boundary
Fg) C 0029, with unit out ward normal fieldN® : ['{) — §% as

o =g on I x1

t = pl) . NO = g0 on ' x1 (2.57)
. _ . . 2.5

oW = v on Fg) x T

Q(i) — Q(i) NG = Q(i) on ]"5) < 1

where @" : (¥ x T — R #1902 [0 x T — R, @ 'Y x1— Rand QU : F((;) xI— R
are prescribed deformation, nominal traction, temperature and (outw ard) normal heat flux
maps. As usual it is assumed that the following conditions hold

rourPur® =a0n®
rinr=rinrY=rionr® =g

ruryur® =on
rynry =rynr=rynr" =9

(2.58)

iii. Initial conditions. Additionally, we will assume the follo wing initial conditions

Lp(i)(', t)|t:0 = 958])()
VOl =700 ¢ in 29 (2:59)
O (-, ) |0 = 6,7(")

iv. Equilibrium conditions on the contact interface. For each material point X € I'V at
any time t € I, we require that the (differential) frictional contact force and normal heat
conduction flux induced on body B® at the material poin tY (X,t) be equal and opposite
to that produced on body B™" at X. Mathematically, these equilibrium conditions take the
form

t(X,t) dI'Y +1?(Y (X, t),t) d'™® =0
W(x,t) drY 4 QP (Y (X, t),t) dT'® =0

he he

(2.60)

where Q1 := Q¥ + R'. is the (outward) normal heat conduction flux at the cortact
interface I'™ and R

fric 18 @ heat source due to frictional dissipation at the con tact interface
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I', The heat sources due to frictional dissipation at the con tact surfaces/"" and I'® are

related to the frictional dissipation Dj,;. := ||t} ¥ through the relationship
Dprie(X,t) dI'D = RY). (X, 1) dI'D + R, (Y (X, 1),t) dI'® (2.61)

(B) General thermoplastic constitutive equations. We will consider a general thermoplas-
tic constitutive framew ork defined in terms of the tangen t deformation maf® := D, a
set of internal variables collectively denoted as G'?, which daracterizes the microstructural
properties, and the local entropy H®.

A generic expression for the in ternal energy B will tak e the functional form

EW .— B® (F(i)’ G , H(i)) (2.62)

Following a standard argument, i.e., Coleman’s method, the restriction placed by the
second law of thermodynamics, the Clausius-Plank inequality D;i)t > 0, yields the following
constitutive equations for the nominal or first Piola-Kirchhoff stress tensor P and the
absolute temperature @, together with the reduced dissipation inequalit y:

P = Opw EO(FD, gD, H),
0D ;= dyw BED (P, G, HW),
A®D — _aGU)E'(i)(F(i)jG(i)jH(i))’
DY) =AY .G >0,

wnt

(2.63)

where we have introduced the variable A as the set of variables which are thermodinami-
cally conjugate to the set of the internal variables G®. '
The evolution equation for the set of internal variables G take the functional form

GV =G4, (P9, AD 00 (2.64)

where Gg?) is a prescribed function, possibly non-smooth, which depends implicitly on F®
in order to ensure frame in variance. Note that (2.64) is restricted by the reduced internal
dissipation inequality given by (2.63),.

Additionally, we consider a generic constitutive equation for the heat flux Q) taking the
functional form

Q(i‘) — Q(i)(F(i), G(i), H(i‘)) (2.65)

which is restricted by the conduction dissipation inequalit yD{) > 0.

(B.1) Thermoplastic constitutive equations for finite deformation multiplicative plasticity.
Micromechanically based phenomenological models of finite strain plasticity adopt a local
m ultiplicative factorization of the deformation gradiei into elastic and plastic parts. This
local factorization was introduced within a phenomenological cortext by Lee & Liu (1967)
and Lee (1969), whic h regard the plastic part as a microstructural in ternal variable. Hard-
ening mec hanisms in the material taking place at a microstructural leel are characterized
by an additional set of phenomenological in ternal variables collectively denoted here b,.
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In the coupled thermomechanical theory, an additive split of the local entropy into elastic
and plastic parts is adopted, where the plastic en troy is viewed as an additional internal
variable arising as a result of dislocation and lattice defect motion. This additiv e split of
the local entropy was adopted by Simo & Miehe (1992). Then the abo ve considerations,
motiv ates the following set of microstructural iternal variables (for the sake of simplicit y
in the notation we will drop out the superindices []¥, denoting a particular body B, in
all the variables, while they are not absolutely needed):

G = {F" ¢, H"} (2.66)

with
F .= F°F?, and H:=H°+ H? (2.67)

In the single crystal model, the in ternal energy functionF depends on lattice distorsion,
which is characterized by the elastic part F* of the deformation gradien t, on the configura-
tional entropy H°¢ and on the hardening in ternal variables. Assuming here for simplicity that
the thermoelastic and hardening con tributions are uncoupled, w e consider for the internal
energy F the functional form

E = E(C* H*) +H(£) (2.68)

where C°¢ := F*TF* is the elastic right Cauchy-Green deformation tensor, to be viewed as
a second order covariant tensor at the (locally defined) intermediate configuration.

PR OPOSITION 2.1. The material time derivative of the elastic right Cauc hy-Green defor-
mation tensor C* can be written as:

Ce:=D— Dr (2.69)

‘

N =

where

D? := sym[C°L"], where LP .= FPFrt

_ — - _ . (2.70)
D :=sym|[C°L ], where L :=F'IF° and [:=FF'
Here D? and D are, respectively, the plastic and total deformation rate tensors. W e
regard these tensors as covariant tensors defined in the local intermediate configuration,
as the symmetric part of the two-poirts (contravariant-covariant) plastic and total velocity
gradient tensors at the intermediate configuration L? and L, respectively, where the elastic
right Cauchy-Green tensor C° act as the metric tensor in the in termediate configuration.
Consisten tly with these definitions, the (t wo-point) total velocit gradient tensor L can be
viewed as the pull-back to the local intermediate configuration of the (t wo-point) spatial
velocity gradient tensor I, with the elastic part of the deformation gradient tensor F°.

PR 0oPOSITION 2.2. Using the expressions derived above, the following relationship hold

e E Ce = 20z D —20z.F : D?

iopp-TY . T 2 TN . 1§ (2.71)
= (F° 2005 PP~ 1) . F — (FT F® 2055 FP~ 1) . F?

H
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Using the expressions deriv ed above, the restriction placed by the second law through the
Clausius-Plank inequalit y, yield the following constitutive equations and reduced internal
dissipation

S :=20s.E(C°, HY),
O = 0y-E(C*, H*),
B = —0: H(E),
Dipe =8 : D+ 6 I:Ip+5°‘ éazo,

(2.72)

where S is the (contravariant) second Piola-Kirc hhoff stress tensor relative to the interme-
diate configuration.

Alternatively, we can get the following constitutiv e equations and reduced internal dis-
sipation

P :=F°20s.E(Ce,H) F*~ 7T,

O = 0y . E(C°, HY),

o ( ) (2.73)
ﬂ = _8£QH(£OK)7

Diny = (F"P) : F' + 0 H" + * £, >0,

where the (t wo-points) nominal or first Piola-Kirchhoff stress tensor P can be expressed in
terms of the (contravariant) second Piola-Kirc hhoff stress tensor at the intermediate con-
figuration, through classical pull-back/push-forw ard operations, leading to the relationship
P = F°¢ § FP~ T, Furthermore the t wo-points stress tensor, beteen the intermediate and
the reference configuration, defined as P := F¢TP can be view ed as the conjugate tensor of
the rate of the plastic deformation gradien tF'?. Note also that balance of angular momentum
leading to the symmetry restriction on the second Piola-Kirchhoff stress tensor at the inter-
mediate configuration § = §7, implies the equiv alent restrictionF¢~! P Fr? = Fr pT pe~!
on the nominal Piola-Kirchhoff stress tensor P.
An equiv alent expression for the reduced internal dissipation taks the form

Dipy =5 : L’ + O H? 4 f* &, (2.74)

where X := C¢ § has been introduced as conjugate tensor of the plastic velocity gradient
at the intermediate configuration. Note, also that balance of angular momentum leads to
the restriction C*~! ¥ = T ¢ T,

Here, P is the (two-point) nominal first Piola-Kirchhoff stress tensor, S is the (contravari-
ant) second Piola-Kirc hhoff stress tensor at the intermediate configuration and note again,
that the elastic right Cauchy-Green tensor pla y the role of metric tensor at the in termediate
configuration in the definition of the (t wo-point) stress tensorX as stress conjugate of the
(two-point) plastic velocity gradient tensor at the intermediate configuration L”.

Within a coupled thermomechanical framew ork the reduced internal dissipation can be
splitted into a mechanical and a thermal dissipation, according to

Dint = D'm,er:h + Dther’ (275)

where

Dme(:h = ‘g . Dp + ﬂ(x é(x = Z_’ : Ep +le é(x) Dther =0 HP~ (276)
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Assuming a yield criterion of the form @ = @(5’, O, "), the evolution law of the internal

variables take the form B .
D? .=~ 059(S,0,5%),

Hp = a@é(gaeaﬁa)a (277)
éoe =7 8ﬁ"é(§a97ﬂa)‘

Alternatively, assuming a yield critrerion of the form ¢ = @(f}, O, %), the evolution law
of the internal variables take the form

7 =y 068(5,0, %), (2.78)

REMARK 2.4.  The represen tative thermoplastic model shoved above has been defined
by the internal energy F = E'(C_'Q,H“) + H(&,) as a function of the elastic right Cauchy-
Green tensor (at the in termediate configuration) and the elastic part of the eriropy plus a
hardening potential as a function of the internal hardening variables. Alternativ elywe can
adopt the absolute temperature in place of the elastic en tropy as an independeh variable
by introducing the free energy function ¥ = ¥(C*¢,0) 4+ H(£,) via the standard Legendre
transformation ¥ = [ — O H*.
In terms of the free energy , the internal dissipation takes the form

Diy :=P:F+H O —¥+6 H" >0 (2.79)
with Dint = D'm,ech + Dthe'r‘a where
Dypeen =P F+H O —¥ >0, and Dy, =06 H” (2.80)

Taking the time deriv ative of the free energy function and applying the chain rule, a
straightforw ard argumen t yields the following constitutiv e equations and reduced dissipation
inequality

S :=20:.9(C¢,0),
H® := —0o¥(C*,0),
i o¥(C7,0) (2.81)
/B = _afo‘H(é-(z)a
Dint :ZS:DP+@H'?+/8W é:a > Oa
Using the additiv e split of the total entroyy into the elastic and plastic parts, the additive
split of the internal dissipation into mec hanical and thermal, and the constitutiv e equation

obtained for the elastic part of the entropy, the reduced energy equation can be expressed
in the alternative temperature-form as:

ce® = —DIV[Q] + R — H® + Dyeen (2.82)

: @ée@(é"',@) Nel
is the elastoplastic structural heating and D,,.., := § : D? 4+ % £, is the reduced (plastic)
mechanical dissipation. []

where ¢, := —O82,¥(C?,O) is the reference heat capacity, H? := —Od2
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2.5 V ariational Formulation. Weak Form of the IBVP Including Frictional
Contact Constraints

(A) Configuration and admissible temperature spaces. Let the configuration space and
the admissible temperature space for the body B(Y be defined by the inifinite dimensional
configuration manifolds, denoted here respectiv ely as

cl = {p® e W (W) im : det[DepP] >0 in 2 and o0 ="}

0 . . i . (2.83)
Cirer = {07 € WH(QO) im0 09 > 000 29 and 0|0 =6}

where W1P(£2()) is the Sobolev space of order (1,p) for some p such that 2 < p < co.

(B) Admissible variations spaces. Associated with the configuration and admissible
temperature manifolds, we have the tangent (linear) spaces of (time independen t) material
displacemen ts and temperature test functions, respectiely, defined as

Vé” = 'r;(()z) : Q0 5 Rraim | n(gZ)lpLi) =0}
(%) (@) . ) N (%) (2-84)
T ::{Co D 2 — R |<0 |p;_;') :0}

(C) W eak form of the IBVPUsing standard procedures, the weak form of the momentum
balance and reduced energy equations can be formally justified by taking the L,—inner

product of (2.47),, and (2.47); with anyn(z) € Véi) and any ([Ei) € %(i), respectively, and
making a straigh tforw ard use of the divergence theorem, leading to the follo wing expressions:
(Z ( — (i) 00
(@my") = (VI my")
(s V', mg”) + (P(“,GRAD[%' D =BV ng") + 7 mg") oo + (¢ mg”) pio
(O, ¢") = (@Y, GRADG]) = (R + iy, ¢07) = (@, 6") pgp — (@6 ) e
(2.85)

which m ust hold for ary (material) test function 5\’ € V!’ and ¢{” € 7", Here (-,-)
denotes the L, (2”)—inner product and with a sligh t abuse in notation(-, ) ., (-, ) .» and
7 Q

(-,")r denote the L,(I'{V), Lg(F(E;)) and L,(I"?)—inner products on the boundaries I'{V,

F(i) and 'Y respectively.

Denoting b deyn meen (VO POp@y and G2 (P@; ") the dynamic and quasi-
static weak forms of the momertum balance equations, respectively, excluding frictional
contact contributions, and by Gt ,““,L(P('i);n(()")) the frictional contact contribution to the
weak form of the momertum balance equations, respectiv ely defined as

GS e VO, POy o= (0T O gy G0 (PD?)
Gonsmeen(PVi0l") = (P9, GRAD[ng"]) — (B, ") — (FV,m{") o (2.86a)
Gitmech(P(i); 7’(()1)) = _<t(i)3'r’((]2)>[’(") = _<P(l) : N(i)an(()”>['(“

and denoting by GdJn e (@P,QD: ¢87) and GY) L, (@5 ¢ the dynamic (transien t)
and quasi-static weak forms of the energy balance equations, respectiv ely, excluding ther-
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mal frictional con tact contributions, and byijlher(Q(i); Cé“) the thermal frictional con tact

contribution to the w eak form of the momertum balance equations, respectiv ely defined as
(@(Z) H(Z)7Q(l); Cé”) = <@ L)H(Z) C( )> + thut ther ( (Z); COI))
i i i) i (%) i i (1) iy 0
G (QU5GL7) = —(QU, GRADICS) — (R + D, 617 + Q%687 g
Graner (Q567) 1= Q") rin = (@ N, () pos

(Y(l)

T dyn ther

(2.86b)

the weak form of the momentum balance and energy equations for body B‘” can be expressed
in short hand notation as

(G~ V) =0
(V(i),P(i);’r]éi)) —|—G(,ij) ‘ (P(i). (’)) 0 Y 7’(’) V(gl)’ (gl) c 7Tj(i> (2.87)

c,mech

G(L)

dyn,mech

G e (@D HD QW) G0, (@P5¢") =0

For the m ulti-body dynamics system, the mometum balance and energy equations tak e the
form

n

) 3
> (e = v n) =0
=1
: (2 2 7 (2 7 i 7 7 7
Y Cimmean (VY PUsm ZGcfnech POini”) =04 ¥’ eV, o7 e T,
i=1
Z Gfizyn ther (@(i)a H(i)u Q(i); C(EZ)) + Z Gifw)ther(Q(i); C(EZ)) =0
=1 =1 J

(2.88)

In particular, for two intertacting bodies B and B®, the frictional contact mec hanical and
thermal con tributions to the w eak form of the mometum and energy balance equations, at
the material con tact poits X € I'™ and Y (X,t) € I'®, at any time ¢ € I, take the form

Gilrjlch(P(l) P(z‘)‘ (1 77(2)) GS)?Lech(P(l);n(()l)) G(c27)nech(P(2);n(()2)) (2 89)
Gl (Y, Q) <<” 1) = G (@G + G (@567

The weak form of the equilibrium conditions at the contact interface given by (2.60), can
be expressed as

(DX, 8),m” ) oo + (# (F (X, 1), 8),m57 ) e = 0 (2.90)
(Qh (X,1), 7 ) ren + (@12 (¥ (X, 1), 8), 52)>m) =0
and the w eak form of (2.61) tak es the form
<’DfriC(X7t)7C(§2)>FU) = <RfILL(X t) CUH > SV + <R(f2ru,( ( ,t),t),452)>['(2) (291)

Using (2.86) and (2.89)-(2.91) the mechanical and thermal frictional con tact contributions
to the weak form of the momertum and energy balance equations, at the material contact
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points X € I'V and Y (X,t) € I'®, at any time t € I, take the simple form

1,2 NG (a 2
G(( mir‘h (P(l)"q(() )7 o )) = _<t(1 » Mo ) 77(() )>F‘1’ (2.92)
(1,2) L) A 2)y (1) (1) (1) _ (2 )
Gc,ther(Q(l)’ 0 150 ) T < he Rfrif?’ 0 0 > (1) <Df"ﬂ’ CU >F(1
where the relation ¢ := P® . N®  and the argumen tsin t(X,t), n\"’(X) and

n? (Y (X,t)) have been implicitly considered.

2.6 Linearization of the Frictional Contact and Thermal Kinematics

(A) Directional derivative. Given the configurations ¢” and the admissible variations
"70 , for the bodies B”, i = 1,2, we define the perturbed configurations ¢(¥ as

Pl =o' + e nf) (2.93)

where the € is a scalar perturbation parameter (not to be confused with the penalty param-
eters ey and e7).
Then, for an arbitrary field A(X, oM o) given for any X € I'Y, the linearized
variation §A(X, ™", ?) is defined through the use of the directional deriv atie, as
SAX, ¢, 0") = —| AX, 01, l”) (2.94)
€

e=0

(B) Linearized variation of the gap function g . Using the definition of the gap function
gn(X,t) given by (2.3) and exploiting the definition of directional deriv atie (2.94), the
linearized variation of the gap function gy (X,t) takes the form

Sgw == [my (X) = my” (¥ (X, 1) — m(¥ (X, 8), 1) 6E°(X,8)] - v

(X, 8) = (T, 1), 0)] - (299)

Using the relation 7, € 7,5 along with (2.3) and the constrain tév € 7,5 the directional
derivative (2.95) can be written as

Sgn = —[m”(X) — m” (¥ (X, 0)] - v (2.96)

(C) Linearized variation of the contact parent coordinate£(X,t). The linearized v ariation
of the contact parent coordinate £(X,t) can be obtained in the following way. Using the
definition of closest-point projection, the following normalit y condition holds forx = 1, 2,

[V (X,t) — P (Y(X,1),)] - 7o = 0 (2.97)

The directional derivative of (2.97) leads to the following k ey expression

Aupd€” = [ng" (X) = my” (¥ (X, )] - 7o — g (X, 1) v - 070 (F (X, 1)) (2.98)
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where
Aop = Mop + N Kap (2.99)

Determination of 66 thus, will requires in version of a tw by two symmetric matrix A =
[Aops], with components A,y defined by (2.99). Denoting by A*” the componen ts of the
inverse matrix A~! = [A*?] the linearized variation 5¢* takes the form

68" = AP {[ng? (X) — ni” (7 (X,0))] - 75 — gn (X, 1) v m (¥ (X, 1))} (2.100)

When gy = 0 then A,p =mys, A’ = m*® and (2.100) simplifies to

0E gm0 = [m" (X) —m” (¥ (X, 1))] - ° (2.101)

(D) Linearized variation of gy. Following a standard use of the directional deriv ative
and after a reasonable amoun t of algebra, the linearization ofégy given by (2.96), leads to

A(dgn) = gn (v~ 77((]2; + Koy 5@) maﬁ(V : A<Pf§;) + H55A§T5)

e i (2.102)
+v (07AP + Al%ng,) + Kap SETAEL

(E) Linearized variation of 6¢%. The linearized variation of §¢“ m ust be computed
implicitly, by computing the directional deriv ative of (2.100). Since the calculation is quite
lengthy we merely state the result, which is:

AupABE) = —(1o nih + gn v - myag) AEP

(1o ApE + gy v Ap2)) 68°

(m” =" = 8€77) - (M@ + ewp(€) AL) (2.103)
(Ap™ — Ap® — A7) - (0, + eas(€) 6E°)

— 7o - sy (&) + gnv - ea,p,(€)]0E7 AL

+ o+

Particularizing (2.103) for gy = 0, after some algebraic manipulation and using (2.23) and
(2.96), the linearized variation of §£* at gy = 0, takes the form:

maﬁA(‘Sgﬁ) = —(Ta - n((JZB) Agﬁ|gN:U + To A‘P,(;) 6gﬁ|gw:0
— Sgn (Al v+ Ko AL =0)
- Agzv("?éii v+ Kapd€ | gn=0)
— 7o €37 (€) 07|40 AET|gy=o

(2.104)

(F) Linearized variation of the thermal gap go. Using the definition of the thermal gap
ge given by (2.48),, its linearized variation at a fixed configuration is trivial and takes the
simple form:

590 = G (X) = G (¥ (X, 1) (2.105)




266 C. Agelet de Saracibar

(G) Linearized variation of the mean gas temperature 8g. Using the definition of the
mean gas temperature at the microcavities 65 given by (2.48),, its linearized variation at a
fixed configuration is defined as:

80 = he V(X)) + (1= he) ¢P(V(X,1)) (2.106)

2.7 F rictional Coitact Mechanical and Thermal Contributions to the Weak F orm

Starting with the expression for the frictional con tact mec hanical and thermal con tributions
given by (2.89), using the split of the frictional contact traction (2.8) and (2.30), the lin-
earized variations (2.96) and (2.100), and the thermal expressions (2.105) and (2.106), the
frictional contact mec hanical and thermal con tributions to the weak form can be coav
niently expressed as

GZTLCCh(SD’,r’U) = <tN759N>P(‘) + <tTrx755a>F(l)

ther o _ ) (2107)
Gc (@7CU) Ca <Qh07598>f’(‘l <Dfr10750G>F(1)

where a short hand notation has been in troduced, denoting asy € C,ecn, and ng € V, the
collection of mappings ¢ € ¢ and n(()z) € V(ﬁz), t =1,2, and @ € Cipe,. and (o € To

mech

the collection of mappings O € C't(}?er and Céi) € Tﬂ(i), 1 = 1,2, such that the restriction of
each of the maps ¢, 19, © and (, to the domain 2% gives identically ¢*, néz), O and Cé”
respectively.

3. THE DISCRETE INITIAL BOUNDARY VALUE PROBLEM INCLUDING
FRICTIONAL CONTA CT CONSTRAINTS

The numerical solution of the IBVP including frictional contact constraints at finite strains

involves the transformation of an infinite dimensional dynamical system, governed by a

system of quasi-linear partial differen tial equations into a sequence of discrete nonlinear
algebraic problems b y means of the follo wing taowsteps:

Step 1. The infinite dimensional space Z = Ceon X Vo X Ciner X Ty is approximated by a
finite dimensional space Z" C Z via a Galerkin finite element projection. The projection
in space of the dynamic weak form of the momentum equations and the reduced energy
equations leads to a nonlinear coupled system of ordinary differential equations (ODE’s)
which describe the time ev olution of nodal degrees of freedom in the time iterval of
interest 1.

Step 2. The coupled system of nonlinear ordinary differential equations describes the
time ev olution in the time in terval of interest, of the nodal degrees of freedom and
the internal variables associated with the finite element Galerkin projection. A time
discretization of this problem in volves a partitionl = UN_[t,,, t,,+1] of the time in tervall.
Within a t ypical time subin terval,], t,+1], a time marching scheme for the adv ancemen t
of the configuration, velocity and temperature fields in Z" together with a return mapping
algorithm for the adv ancemen t of the internal variables results in a nonlinear algebraic
problem which is solved iteratively. The use of an operator split, applied to the coupled
system of nonlinear ordinary differen tial equations, and aproduct formula algorithm,
leads to a staggered algorithm in which each one of the subproblems defined by the
partition is solved sequentially, within the framework of a fractional step metho d
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3.1 Time Integration of the Coupled Problem: Fractional Step Methods

(A) Abstract ev olution problem. Giv en a partitionI = UM_[t,,, t,+1] of the time interval
of interest I, algorithms for the time integration of the coupled initial boundary problem
of dynamic thermoplasticity are typically designed by rewriting this system as an abstract
first order evolution problem for the primary variables.

Let us consider the following abstract first order ev olution problem:

d .
Sat) = LGOI+ F() i @xL,

2(, t0) = 20(-) in £2,

(3.1)

where z(-,t) € Z lies in a suitable function space Z, typically a Banach space of the Sobolev
class, A[] is a nonlinear elliptic operator, f is a prescribed forcing term and z, € Z is some
specified initial data. Under suitable tec hnical assumptions the homogeneous ersion of the
abstract evolution problem defines a local semi-flow, denoted by

ft 1 Z X [tn)tn+l] — Z, (32)

which advances the initial data z(-, %) € Z to the solution of the abstract evolution problem
at time ¢ according to z(-,t) = Fi[2(-,ty)] and satisfies Fi,s = F; o F, for t > s. In what
follows, we shall assume that the tec hnical conditions whic h ensure the existence (at least
locally in time) of the flo w hold.

Let Ka: : Z X R — Z be a one-parameter family of maps, referred to as the algorithm
in what follows, whic h depends continuously on the parameter A> O herein referred to
as the time-step. W e shall assume that the algorithm isconsistent with the semi-flo w, and
hence the following two conditions hold

. . 1
Al&rﬂ_o Kaiz] =z and Al&rg_o E[Km[z] —z] = Alz]. (3.3)

Now the key idea is to introduce an additive operator split A[-] = A*[-|+ A?[-], where A'[]
and A?[-] are two operators defining the following t wo (hopefully simpler) sub-problems

Problem 1 Problem 2

d

20t = A1+ £ ) (1) = A%[2( )] + £7() (3.4)

EZ
where, additionally , a split of the prescribed forcing terms f = f! + f2 has been considered.

Now consider algorithms IC},[-] and K%,[-], consistent with the flows F* and F?, respec-
tively. Then the algorithm Ka[-] is defined by the product formula

Kad] = (’Cit oiclm)[.], o Z X [tey bl (3.5)

Furthermore, in order that the product fornmla algorithm defined b y (3.5), preserves cru-
cial properties of the flow, i.e. dissipative stability, each one of the algorithms arising from
the operator split must be designed to preserve those properties. P articularly in the context
of coupled thermoplastic problems, it was first show by Armero & Simo (19922a,1992b,1993)
than the classical isothermal operator split does not preserve the a-priori dissipative stability
estimate of the con tinuum problem, while their new proposed isetiropic operator split pre-
serves this crucial property, leading to an unconditionally stable product form ula staggered
algorithm.
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(B) Product form ula algorithms for coupled thermomehanical problems. Isentropic
split. The governing equations of the coupled thermomechanical evolution problem can be
expressed as an abstract first order system of ordinary differen tial equations given by (3.1),
in which the primary v ariables, operator and prescribed forcing terms are giv en by

@ 1% 0
z—{V} Alz] = - DIV[P] f=1 ;B (3.6)
- ? - Po ? - Po ‘ ‘
H —% DIV[Q] + & Din SR

2

ise

\4 0
Al l2] = { o> DIV[P] }, AL [2] = { 0 } ; (3.7)
0 —5 DIV[Q] + § Dins

Let consider now the follo wingisentropic operator split A[-] = A}, [] + AZ,.[-], where

together with the associate prescribed forcing terms split given by

0 0
filse = { pl_nB } ’ ffse = { 10 } . (38)
0 5B

Use of a product formula algorithm linked to the isentropic operator split leads to a stag-
gered solution time in tegration algorithm in whih one must solve first a mechanical problem
(with heat conduction) at constant entropy, follow ed by a thermal heat conduction problem
at constant (fixed) configuration. It w as shown by Armero & Simo (1992a,1992b,1993), than
in sharp contrast with classical staggered solution algorithms based on an isothermal opera-
tor split, the isentropic operator split preserves the a-priori dissipative stability estimate of
the continuum, leading to an unconditionally stable product formula staggered algorithm.
See Armero & Simo (1992a,1992b,1993) for details on an efficient implementation of the
isentropic operator split.

(C) Product form ula algorithms for coupled thermomehanical problems. Isothermal
split. The governing equations of the coupled thermomechanical evolution problem can be
expressed as an abstract first order system of ordinary differen tial equations given by (3.1),
in whic h the primary v ariables, operator and prescribed forcing terms are giv en by

o % 0
z={V}, Alz] = - DIV[P] ., f={>B%. (3.9
o ~L DIV[Q] = L H? + L Do LR
Let consider now the follo wingisothermal op erator splitA[-] = AL, [-] + A2, [-], where
14 0
Azlso[z] = pl_q DIV[P] ? A?so[z] = 0 ) (310)
0 _é DIV[Q] - é %EP + i ID'rrLcch

together with the associate prescribed forcing terms split given by

0 0
fiso = { B } v fee=9 0 ¢ (3.11)
0 LR

Use of a product formula algorithm link ed to the isothermal operator split leads to a
staggered solution time in tegration algorithm in whih one m ust sole first a mechanical
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problem (without heat conduction) at constant temperature, follo wed by a thermal heat
conduction problem at constan t (fixed) configuration.

3.2 Spatial Discretization: The Galerkin Projection

Consider a spatial discretization 2() = Um0 of the reference configuration 29 C
R™im  generically refered as the triangularization and denoted by 7" in what follows, into
a disjoint collection of non-overlapping subsets £2(9, i = 1,2. We will refer to a typical
subset £2{9 as a finite elemen t and denote byh > 0 the characteristic size of an element in
a given triangularization.

Associated with the triangularization 7"

one introduces finite dimensional appro xi-

c ¢ and € c € to the configuration and admissible temperature

mations C.” meeh

'mcch

manifolds Cffl)ech and Cther, respectively, defined as

C(t)hh _{ )k € C

mec

C(ﬁ)h - {@(z)h C(Z)

ther ther

DM e [CO(RW)]M i and @M 0 € [PH(Q)] iy
O e [C°(2™)]  and 9“)h|9£i)€[Pk(Q£L))]},

mech

(3.12)

where P*(2{V) denotes the space of complete polynomials of degree k > 1.
The finite dimensional subspaces V" ¢ V{" and 7" € T of material test functions
associated with C'”" and € are defined as

mech ther

V('Z')h = { (Ji)h c V(yi) . n(l)h [CO(.Q 7 )]nd,m and n(Z)hlq(Ei) c [Pk(géi))]ndim}

; (3.13)
h h h N i
T =G e T 1 (PN elCN(2)] and GV € [PH(2)])-

(A) Galerkin projection of the mechanical and thermal frictional con tact contributions
to the weak form. The Galerkin projection of the mechanical and thermal frictional con tact
contributions to the w eak form, giv en for the continuum case b y (2.107), can be written as

GTCCh(‘Phan(};) = <t}1§/’59}2i7>1“(1)’1 + <t§l“a7 f_ah>1“(1)"

. (3.14)
Gf:h (@h7 C(?) = <QZ(:7 592>p(1)h < fricy 56h >F(1)h

where ()" denotes the Galerkin projection of (-). In particular, using the short hand notation

introduced in (3.68), " and n” refers to the discrete collection of mappings ¥ and néi)h,

i = 1,2, such that the restriction of each of the maps " and ! to the domain 2"
Dt and " 1espectively. Analogously ,0" and ([ refers to the discrete
z)h

gives identically ¢!
collection of mappings ©@®" and ¢, ;. = 1,2, such that the restriction of each of the maps
O" and (] to the domain 2" gives 1dentica11y OO" and ¢\"", respectively.

The projections dgl and %" are given by (2.96) and (2.100), and the projections §g2
and 80} are given by (2.105) and (2.106), with discrete quan tities replacing their contimous
counterparts.

(B) Linearization. The linearization of the mechanical and thermal frictional con tact
contributions to the w eak form giv en by (3.14), yield the following bilinear forms

Bmech( oaA(Ph) — B;Tz}echyeo(ngb’Asoh) 4 szilech,mat(n(})z’Asoh)

er,geo er,ma (315)
B (Gy, AB) == By (¢, AO") + Byt (¢, AO")
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Here B;’fd“gw(',-) is the mec hanical geometric term defined for fixed (nominal) contact

h

pressure t;i, and (nominal) frictional tangen t tractiont  at given configuration ¢ € C ..

by the bilinear form:

B:?%hvgeo("gvA‘Ph) 1= (th, AGGN)) pone + (8705 AGE)) piayn s (3.16)
B™em™et (L) is the mec hanical material term defined for fixed configuration ¢ € C*_, .
P

by the bilinear form:

mech,mat ) AN L L L cah
B<P? f(n(}) ) A‘P} ) = <At§\77 59;[)1"(1)’” + <Ati[av 8¢ ] >F(1)” ’ (3.17)
Bgl,f’"’geo(-, :) is the thermal geometric term defined for fixed (nominal) heat conduction flux

h

mech?

Q! at fized given configuration " € C by the bilinear form:

Bngcrﬂw( éL,A@h) = < h A((Sgg»[v(nh — <ID;L”<C,A(508)>F“)117 (318)

he?

and B ™mat(. ) is the thermal material term defined for the current fixed admissible
e )
B

thermal configuration @) € CJ} ., by the bilinear form:

BU0(( AO") = (AQh, 3g3) i — (AD)10, 805) oy (3.19)

3.3 T emporal Discretization. Frictional Return Mapping

Consider the time interval of interest I = [0,7] discretized into a series of non-overlapping

subintervals T:= UY_ [¢,,t,11]. The incremen tal solution to the IBVP is obtained applying
a time stepping algorithm to integrate the evolution equations within a t ypical time step
[t.,tnt1], with given nodal and internal variables at timet,, as initial conditions at the

nodal and quadrature points of a typical elemen t£2{), respectively.

Within the framework of the fractional step metho dg arising from an operator split of
the coupled system of nonlinear ordinary differential equations describing the time ev olution
of nodal degrees of freedom and in ternal variables, a time stepping algorithm to itegrate
the evolution equations is applied to each one of the partitions, using a product formula
algorithm.

Following a standard con ention, w e shall denote by either ¢),, or (+),4: the algorithmic
approximations at times t,, and ¢, to the continuum (time dependent) variable (-);.

(A) Frictional time-stepping algorithms. Most of the usual time-stepping algorithms will
require the evaluation of the w eak form and in ternal variables at some timé, .y, where ¥ €
(0,1]. A class of time-stepping algorithms for dynamic plasticity, including Linear Multistep
(LMS) methods, and amongst them the so-called Backward Difference (BD) methods, and
Implicit Runge-Kutta (IRK) methods, are shown in Simo (1992,1994). Here, we will focussed
on two algorithms for the time irtegration of the constrained frictional evolution problem
defined by (2.41) and (2.42): the lowest order BD method, called Bakward-Euler (BE)
method, and amongst the Implicit Runge-Kutta (IRK) methods, the generalized Projected
Mid-P oint (PMP) method.
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(A1) Backward-Euler (BE) method. Consider the appro ximation of (2.41) and (2.42) b y
the low est order BD method, the BE sdieme, to obtain the algebraic equation

Uty = tTna + e[ Mas(€hy — &) — Yut1 PToiy,)

. (3.20)
Ay = 0y + ’y"+1[(1 - w) + w”tTn+1||]
subjected to the discrete complementary Kuhn-Tucker conditions
¢n+l = ||t’l}’n+1|| - /J‘(aﬂr‘rl) th«I»l S 0
Ynt1 2 0 (3:21)

7n+1 ¢n+1 - O

The solution to the constrained incremental algebraic problem defined b y (3.20) and (3.21)
is obtained through the introduction of atrial state, obtained by freezing the irreversible-slip
response, and subsequent return mapping algorithm to enforce the constrain ts.

Step 1. Trial state. The frictional trial state is obtained b y freezing the irreversible-slip
response, i.e. assuming y,,; = 0 and that no constrain ts are present. Then the trial
state is defined as

téf:iia =tir,,t+ eTMaﬁ(Eﬁﬂ - 55)

ay = a, (3.22)
. trial -

o7 = |l (| — (i) tw,,

where ty,,1 = €n(9n,.1) is the normal con tact pressure att,.;.

Step 2. Return mapping. The return mapping defines the final state as the solution of
the discrete constrained incremen tal algebraic problem:

lr,, ., = th’n'ilm €T VYnt1 PToiny, (3.23)
AUy = oz;’"f}l + Yng1 [(1—w) + w||t:brn+1||:|
D1 = ||t;n+1|| - ,U(Oln+1) tnper <0
Yntr1 =0 (3-24)
7n+1 ¢n+1 — 0

Assuming that @4 > 0, otherwise v,4; = 0 and the trial state actually is the final
state, the discrete consistency parameter v,.; can be computed b y enforcing the discrete
counterpart of the consistency condition é,,,; = 0.

Introducing p’. . =% _ /|[t5 || into the intrinsic expression of the frictional traction
Tht1 Trnia Thntr

b _ gbtrial b
tr,,, =tr, . —€r Yny1 Pr,,, (3.25)
collecting terms, setting pz,f:x’ = t';f:ﬂ’/”t?,f’:’il\] and taking norms leads to,
b btrial
Pr,., = Pr,
Y “ (3.26)

[ e [ e e
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Introducing (3.26) into (3.23)-(3.25), the frictional return mapping tak es the form:

b _ Ynt1 btrial
tr,., = (1 —er o) ¢
[zl
Qnt1 = O‘ZJI:LI + Y+t [(]— - ’LU) + wHtZt,:_(jIH —wer 7n+1] (327)
D1 = |87 — €er Yosr — p(@ag1) tnpiy =0
or alternatively, using the consistency condition,
t;“nﬂ = /’L(a'rﬁ-l) th+1 p:blf’::_(il
G = @758 1 gy (1= ) 0 () ] (3.25)
Dyr = Ht?:bﬁl” — €T Vnt1 — M(O‘TL-H) N1 = 0

Computation of the consistency parameter v,.; will require, in general, to solve the

~

nonlinear equation @,,1; = @(7¥,41) = 0, were it is implicitly understood that we are looking
at a4 1 as a function oy, 11 = i1 (Yny1), using (3.27), instead of (3.28),. Using a Newton-
Raphson method the linearization of the slip function yields

&+ DB - Ayl =0 (329
with )
@Eﬁgl = @ffﬂl —€r ’)’7(1?1 - [M(agﬂl) - u(affﬂl)] EN
DO, = —er - Ouu(all)y) Doy trois
all)y = ottt 4 4, 11— w) + wllgrie —w er 48] (3:30)

k rial k)
DO‘ELle =(1l-w)+ wl!t'éfwlll —2wer 'Y.,(L+)1
A’}/(k) (k+1) (k)

n+1 = 7n+1 ’yn+1

and with the initial condition 'yiﬁﬁl =0.

As it is well known, the BE algorithm is consistent and first order accurate. On the
other hand, as it was shown by Simo (1994) within the cortext of J2 perfect plasticity,
in spite of its restriction to first order accuracy, the BE algorithm inherits the dissipative
and contractive properties of the continuum problem and becomes optimal for a long-term
behavior.

REMARK 3.1.  The intrinsic form of the frictional time irtegration described above can
be written as v :
b L btrtql btrqu
tTn+l T Ty T €T Ynt1 an+1
ptrial  ___p pref trial
Tosy = Fry1 tr,,, (3.31)
pref trial pres =B =5 et
tTn_H T An+1 . tTn + GTMQ/B (En+1 - gn) Tn+1

where the surface deformation gradient F,,, and the surface transport operator A, are

defined as

Fol=rh,on,
" o o (3.32)
Aﬁ+1 = Tn‘+l ® Ta,;'
Here the trial state defined b yt%f:f = t?’jziaTg+1 may be interpreted as the result of a

tw o-step algorithm:
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i. Time in tegration of the trial frictional traction on the reference configuration to get
'},r:ilmal This time integration consist of two steps. First, the frictional traction
in the reference configuration at the last converged time step is transported with the
operator A}, to the current closest-point projection on the reference configuration,
follow ed by the (trial) slip contribution given by the distance, with respect to the metric
M.z, between the current and last converged closest-point projections on the reference
configuration.

I . trial
ii. Push-forw ard to the current configuration to gett}. o

Once the trial state has been defined the return mapping is performed on the current
configuration, following standard procedures. []

(A2) Generalized Projected Mid-Point (PMP) Implicit Runge-Kutta (IRK) method.
The Generalized Projected Mid-Point IRK method is constructed via a tw o-stage product
form ula algorithm as follo ws:

Stage I. A BE algorithm is applied to integrate the constrained evolution problem within
a time sub-interval [t,,%,19] C [t.,t.t1] Where t,. 9 = (1 — 9)t, + V1, and ¢ € (0,1].
Thus, the first stage of the algorithm is iden tical to the scheme already described abo ve.
Explicitly, the following steps are performed for prescibed initial data {tT""ff}- and given

n

o,
-’

relative (parametrized) slip increment g5 L = Eoig— &

Step 1. Define the generalized mid-point trial state according to

trial o B ad
tTn+19(Z T tTno( + GTM‘XB (§n+1‘) - E’S)

ol = a, (3.33)
y trial .
Dy =t | = plarl) tw,.,

Step 2. The return mapping defines the final state at the generalized mid-point config-
uration C, ¢ as the solution of the discrete constrained incremen tal algebraic problem:

tTnMOC = té::iloa T T Yt PToyo, (3 34)
Qi = O 1% + Yoo [(1— w) + wl[th, ]
Do = 1t7, 0l — (Qnis) tnppy <O
Yots > 0 (3.35)

7n+19 gpn«l»l? - 0

trial

Stage IIA. Since the trial values t7"? ", and the converged values tr, , . are available
from Stage I and within the context of a product form ula algorithm, the initial datatz,
and o}, 4 for the second stage are defined using the linear extrapolation:

(87

1 1-9

* = ¢ _ trial
Totog * ,19 Tonto o 19 Thntvg

* o l _ 1- 7‘9 trial
an+19 T 190[”4‘19 19 an+19

(3.36)
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Within a finite deformation framework, all the objects involved in the linear extrapolation
given by (3.36) should be view ed as objects lying in the same generalized mid-poin t config-
uration C,,yg. Thus, for the friction Coulomb model this extrapolation is performed on the
plane ty = ty, 49 of the tractions space.

Stage 1IB. The second part of Stage II is iden tical to Stage I, where now the initial
prescribed data becomes t7, ., and the given (parametrized) relativ e slip incremet is

g7, = &is1 — &pg- The steps involved in the update are the follaving:

Step 1. Define the trial state according to

ial . gx &b B
t?:nzil o tT71,+19a + ETMO‘[;‘ (fn+1 - fn+ﬂ)

ai = ag (3.37)
trial
o= |1ty || — p(elliY) ta,,,

Step 2. Perform the return mapping to get the final state at the configuration C,;; as
the solution of the discrete constrained incremen tal algebraic problem:

trial

tTn+1a = Tniig €T Tnt1 an+1a (3 38)
Oén—O—l = a::i?l + 7n+1 [(1 - w) + w||tlf)rn+1||]
¢n+l = ||t5“n+1H - /.L(OZ,L_H) th+l < 0
Yos1 >0 (3.39)

F)/'n,+1 @n+1 == 0

A rigorous stabilit y and accuracy analysis of the two-stage, implicit, PMP algorithm,
within the con text of J2 plasticity was provided by Simo (1994). The accuracy and stability
analysis show that the generalized PMP algorithm is obviously consistent, second order
accurate for the PMP algorithm (¢ = 0.5), B-stable for © > 0.5 and ensures that the final
stage is on the admissible domain. Remarkably, in sharp contrast with others second order
accurate algorithms, i.e. mid-poin t rule, second order accuracy is achieved performing a
radial return mapping in each of the Stages and thus a solution will be alw s guaranteed
to exist for arbitrarily large time-steps. However, the long-term beha viour of this dzeme
is not optimal when compared with that exhibited by the, less accurate, BE algorithm. In
contrast, this scheme becomes optimal for short-term behavior.

(B) Linearization of the frictional time-stepping algorithm. The frictional time-stepping
algorithms presented above are amenable to exact linearization, leading to the correspond-
ing terms of the consistent or algorithmic tangent operator. In order to accomodate the
linearization of the BE and PMP return mapping algorithms into a single expression, we
will derive the linearization of the frictional traction at timet, .y, at the generic configu-
ration C,,y, where ¢ = 1 for the BE algorithm and 9 € (0, 1] for the PMP algorithm. We
point out that the implementation of the PMP IRK algorithm actually requires only the
linearization of the Stage I, while Stage II can be view ed as an update procedure to pruide
the initial conditions for the next time step, after con vergence has been ahieved.

Using the directional deriv ative, the linearization of the frictional time in tegration algo-
rithm leads to the follo wing expressions.
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Step 1. Trial state. The linearization of the trial state tak es the form

AtT tou = A trzal
n Tt
A ,_ A trial 0 (340)
Qpyy = Oén+0 —

Step 2. Return mapping. The linearization of the return mapping takes the form
AtT"‘H"a = /'L(a77'+79) Ath-I—z? pg:,:-(fl—,ﬂu + M(an—O—ﬁ) th+z9 Ap%::]im

trial

+ Oapb(Cnys) Atnyy tnpiy P

Trtv o
Acyyg = AYnie [(1 —w) + w p@is) tungs — W er Yoro] (3.41)
trial .
+ Tnto W Ath“,H,,,”
= A7n+19 [(1 - U)) +w /'L(an+19) th+19]
+ Yngo W [Oapt(Cnyo) tnprs Alnpy + p(anye) Atw,,,]
with
Ath+19 = GNH(gNn«}»I?) AgNn+19
Ag, ., = =0 [ApM" — Ap™" o P (€, 1)) - v (3.42a)
A hvi-(:—i?u = E”’:B A§n+1)
A fr7(17
rial 3 Tryov trial 5 _
Apzi = (85— xf) Htl,t,,a,ﬁ + 7l p, - [0 Ap e OME) + ep,y (€) AEY )
Thto
Al |l = P, AL, = pgie, [0 ApM(E) +ea () AL (349)
Af_gw = 2<}A‘Xﬁ'{[A‘P R A‘P(Z)h (Ento)] - 7 — 9N, sV '[ACPfé)h(E_nw)]}'
1
A’Y'rH»l() = [AH Tn+19H - ,u(an+'l9) AtN"Jr,g] - ;a(xu(an—&-'ﬂ) tN"Jr,g Aan-{—'ﬂ
where,
Eop = €r (Map + May s 97)
gT = rL+L9 52[ (343)
T = Py PT

with the, in general, non-symmetric operator =,s evaluated at t,.s. Here, Ap®" and

A" refers to the incremen tal displacemen ts in the whole step, i.e. fromt, to t,.1, and it
is implicitly assumed that all the objects involved in the expressions are evaluated at time

tors.
Introducing A7, into the expression of Acq,,, ¢ and collecting terms, leads to
Atiy =By Al | = By plonss) At (3.44)
with
B, = 00/0Y|nyo + W €7 Yo
b er + aa/67|n+'ﬂ aouu(anﬂ‘?) tN,.,er
(3.45)
o 6a/87|n+ﬂ
B

- €T + 6&/8'}’|n+ﬂ aa”(an+l9) th+19
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where
0a/0Y|nt9 = (1 —w) +w p(nrs) tNnyo — W €T Ynro (3.46)

REMARK 3.2. As it is clear from (3.43) the lac k of symmetry of=,s arises from the
variation of the surface metric in the reference configuration as the closest-point projection
varies. As it was pointed out by Laursen & Simo (1993,1994), a simple procedure to remove
this non-symmetry is to use the metric at the center of the master element rather than at
the reference placemen t of the current closest-poih projection. [

3.4 FE-implementation. Matrix Form of the Residual and Tangent Operator

In what follo ws, atten tion will be restricted to the finite elemen discretization of the contact
surfaces, leading to the matrix form of the frictional contact residual and tangent operators.

Let n... and n,,.. the total number of slave and master elements, 7,0, and Nunod
the total number of slave and master nodes in a triangularization of the sla ve and master
contact surfaces, respectively, and n¢ , and n¢ . the number of nodes in a generic slave
and master surface elements 'V and " labeled as {X¢ € R"*™ :q =1,...,n¢, .} and
{Ys eR™m™ :q=1,...,nf, . .}, respectively.

This local numbering system is related to the global numbering system via the follo wing
standard convention:

X=X’ with A=IDY(e,a), e=1,...,n00., A=1,...,n° , (3.47)
Y, =Y with A=ID%(e,a), e=1,...,0mee, A=1,...,0n5 ‘

where the n,. x n¢, , array ID(V(-,+) and the n,,q. x n,,; array ID®(.,) are defined
by the geometry of the triangularization 7" A rather con venient form ulation of the
Galerkin projection is ac hieved by writing the local polynomial basis as{N“(¢)}, where

¢ =(¢y...,Cny,—1) are normalized coordinates with domain the unit square[ ] in R™#m~*
and introducing the isoparametric map:

snod

¢cedm x" =y =) N()X;er?
o=t (3.48)

M mnod

¢cedmy"=y"()= > Ny el
a=1

where the local polynomial basis functions N* : [] — R are referred to as the local
elemen t shape functions and satisfy the completeness condition N*(¢;) = 65, where ¢, =
(Ciay--+yCuyi—1 o) are the vertices of the bi-unit square.

The Galerkin projection of the mechanical and thermal frictional con tact contribution
to the weak form given by (3.14) and to the bilinear form giv en by (3.15)-(3.19), can be
written as the assem bly of integrals over the,.,. slave surface elemen ts of V)" as:

Naele

G"r:n,e(:h(wh’ n(})b) = U Gzn,ech e((’ohjng,)
e=1

Nsele
GO, = Gl e(en,q)
e=1
MNsele
BZ?C}L(U{};AP}Z) p— U BZ?Ch e(n(}JL,A‘Ph)

e=1
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Nsele

Bthe'r( éL,A@h) = U Bgl;ch e( ;L,A@h) (3'49)
e=1

o

where G™¢°h ¢(p" nl) and Gther ¢(O", (l'), and BZ‘;“ “(nh, Ap") and BTt ¢((l, AO™) rep-

or
resent the mec hanical and thermal frictional con tact contribution to the w eak form and bilin-
ear form, o er a typical slave elemen t surfacel (V" C I"™" given by (3.14) and (3.15)-(3.19)
with L,-inner products over the elemen t domain.
Numerical in tegration of these elemen t frictional contact contributions leads to the fol-
lowing expressions:

Nint

Greeh (o) = = Wi (o) 680 - Reeh o

=1

G (00,G),) ==Y Wi j(¢i) 6@ - R
=1
B(’f;]]t:’(‘h P(ng7A§0h) = ZW1 ](C7) 5@2,7 . K:}n,ech e, . A@ZJ

i=1

(3.50)

Nint

Bt@i%e'r e( (})L’A@h) = ZWz ](Cz) 6@f,z R Kihe'r' e A@f,z
i=1

where n;,; is the number of integration points to be used in the quadrature rule over the
domain I'™M" W, is the weight of the quadrature point¢;, 7(¢;) = || X 1(¢:) X X 2(¢5)]], where
X, =dX/d(* o =1,2, is the jacobian of the isoparametric map at the quadrature point ¢;,
§®%" and AP are vectors of involved nodal displacement variations corresponding to the
quadrature point ¢ of elemen te, §@%* and A@" are vectors of involved nodal temperature
variations corresponding to the quadrature pointi of elemen te, R™" ¢ and KmMech ¢
are the mechanical frictional contact local elemen t residual vector and tangent matrix
corresponding to the quadrature point i, respectively, and R**" ¢* and K" ¢t are the
thermal frictional con tact local elemen t residual vector and tangent matrix corresponding
to the quadrature point ¢, respectively.

REMARK 3.3. As it is evident from (3.50), the elemen tresidual and tangent finite

elemen t operators have been organized ly (slave) quadrature point rather than by (slave)
elemen t. This scheme pro ves to be more con venieny taking into account that each (slave)

quadrature point may iwolve degrees-of-freedom of (master) nodes of different (master)

elemen ts. Finite elemen t operators associated to a typical (slave) quadrature poit in a

typical (slave) elemen t, will inwlve the dof’s of the (slave) nodes of its (slave) elemen t and
the dof’s of the (master) nodes of the (master) element containing the contact point. On the

other hand, finite elemen t operators associated to a typical (slave) elemen, will involve the

dof’s of the (slave) nodes of its (slave) elemen t and the dof’s of the (master) nodes of the,
possibly different, (master) elemernts containing each one of the contact points associated to

each (slave) quadrature point. []

REMARK 3.4.  Associated to each (slave) quadrature point we define a contact element
involving degrees-of-freedom of the sla ve and master surface elemems. When nodal quadra-
ture points are used, the contact elemert will involves the degrees-of-freedom of the sla ve
node and the degrees-of-freedom of the master element surface containing the closest-point
projection. When a different quadrature rule is used, the contact elemert will involves all
the degrees-of-freedom of the sla ve and master surface elemens. []
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(A) Application: Residual and tangen t operator for a n-node 3D surface elemert dis-
cretization. In this section we will present the finite elemen t impleméntion of the fric-
tional contact model, assuming an arbitrary n-node finite elemen t 3D spatial discretization
of contact (master) surfaces. F urthermore, w e will assume that nodal quadrature is used to
define (3.50).

In what follows, we will restrict our atten tion to a typical slave quadrature point, i.e. a
slave node using nodal quadrature, with curren t placemet denoted as = and to the n-node
master element surface containing its projection § € y?*, denoted as v(»". Tt is assumed
that the projection point 7 lies in the interior domain of the surface element (2",

W e will denote ascontact element the set of nodes consisting of the slave node (playing
the role of quadrature point) and the n-master nodes defining the surface element ~(*".
Taking the nodal displacemen ts as nodal degrees of freedom w will get the mechanical
contact element while taking the nodal temperatures as nodal degrees of freedom we will
get the thermal ¢ ontact element

(A.1) Mec hanical contact elemet. Associated to each mec hanical contact elemen we
define the vectors of nodal displacement variations §®, and A@, containing the displacemen t
variation of the slave (quadrature) node, denoted as dd, and Ad, respectively, and those of

the n-master nodes in v»", denoted as dd, and Ad,, a = 1,...,n, respectively, as
od, Ad,
5(11 Adl
8, = : , A, = : (3.51)
éd, Ad,

Furthermore we introduce the following operators

v Ty 0
—N1 (é) 1 74 —N1 (E) To _lea (é) 174
N = . , T,= . , N, = . , (3.52)
_Nn(@ v _Nn(é) Ta —Nosa (E) v
where o = 1,2, and N,, a = 1,...,n are the standard isoparametric shape functions of the

arbitrary n-node elemen t. Using the operators in troduced above, we also define:

D® := Aa[j(Tl[j + gNN[j)

N, = N, — s D* (3.53)

where the indices a and § ranges from 1 to 2 and the summatory on repeated indices is
assumed. Here, A*? are the componen ts of the inverse of matrixA defined in (2.99).
With the preceding notation in hand, and using the key discrete relations,

Sgh == —N - &,

=z 3.54
§E°" .= D* . 6@, (3.54)

the mechanical frictional contact residual R™**" takes the expression,
R .=ty N — tp, D" (3.55)

where o =1, 2.
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The mechanical frictional contact tangent operator can be split into the normal and
tangent contributions.

Kmech Kmech + KZJ,ECh (356)

Additionally , from the mehanical material and geometric terms in the bilinear form (3.15),
the mechanical normal con tact and frictional tangent operators, can be split as

K'mcch . K'mcch,mat 4 chch,gco

Kmech, Kmech, mat + Kmech ,geo (357)

where K;’;,“h’m“t and Kff\fc"’geo are the material and geometric contributions to the me-
chanical normal con tact tangent operator, respectivelyand K;’;“W“t and K;’;ec}l’ge" are the
material and geometric contributions to the mec hanical frictional tangent operator, respec-
tively.

Using the operators defined abo ve, the mec hanical normal con tact tangent operators can
be written as

K7hmt e H(gy) N® N

_ _ 3.58
K;’;@h’gco =ty [QN maﬁNH ® NB _ (DO‘ ® N, + N, ® Da) + H/(zBDa ® DB] ( )

To define the mec hanical frictional tangent operators, we introduce first the following
operators:

Twﬁ = [0T7 _Nlﬁ(é) T(,f) ey T n.ﬂ(é) TE]T
Nos :=[07, =N1osg(E)W7, ..., —N,.as(&)v"]" (3.59)
P, = [OTa _Nl,a(@ p’I}TJ ey _Nn,a(a PZ“T]T

2 and the shape functions are evaluated at £&. Based on the definitions

where o, =
(3.53) an (3.59), we introduce the additional operators

(3.52),

Top = Top — (€p(€) - 7o) D"

=P, — (e, -p2 D"

i ( 77(5_) PT) (3.60)
wp = Top + gnNog

*:=D" — m”‘ﬁTﬁ

5

where o, =1,2
With the preceding definitions in hand and the key expressions
(5g0(1)h — 590(2)’7’) 1, = T, 6P,
&p(z)h v :=—N, 0P,

3.61
5(p 2)h = _Tl[ja . (S@C ( )

(2)h
5‘»"05;% v = —Nyg - 0D,
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the geometric part of the mechanical frictional tangent operator can be written as

K'm,cch,gco R t A(xBKrrLc(,h ,geo
cT

cTg
K::::h,!}eo — aﬁ X DB + Dﬁ R Toc,@
+ D’ @ Tgo + Tpo ® D” (3.62)

- (N®N,+ N,®N)
emf) To + 9N eoe[ﬁ'yé_) DB®D7

The material part of the mechanical frictional tangent operator will depend of the slip/stic k
frictional state. Using the abo ve definitions, the mec hanicaktick material frictional tangen t
operator, denoted as Kﬁec}l*m“t’smk and the mechanical slip material frictional tangen t

operator, denoted as KZT;“}’“m“t’S“p, can be written as

Kx‘ech,nmt.stzck = F 5 D¢ ® D[ﬁ

K:;ech,'m,at.slip = _(1 _ B?) (Oé) en H(gN) pr. Dm ® N
e N RN B
B

- [IUI(O[) tN || btrml“] ﬂ-ﬁ Da ® PIB

where £y = 81 Oop(a) ty and By := By Oopu(a) ty and By and B, are given in (3.45).

REMARK 3.5. Bi-linear surface elemen ts.Note that for the particular case of 4-node bi-
linear surface finite elemen ts,N,s = 0 for o = 3, e, 3 = 0 for o = 3, e, p, = 0 for any
a,B,7, Eqp =0 for o = and the componen ts of thenon-symmetric operator =,z (3.43);
take the form:

[n

—

L= ep (My + Migr)

12 1= e (Miz 4+ 2X1g7 + Xog7)
er (M1 + M\igp + 2X297)

(Mao + >‘29T)

[n
|

(3.64)

[
|

—-

2

L

(%]
]

= ¢ep

where the short hand notation A, := E; »(€) - 77¢/ and g% := £, , — £2 has been introduced.
In the above expressions, greek indices o, 3,7 varies from 1 to 2. []

(A.2) Thermal con tact elemen tAssociated to eac h thermal con tact elemenwe define the
vectors of nodal temperature v ariationsé®, and A@, containing the temperature v ariation
of the slave (quadrature) node, denoted as 6@, and A@, respectively, and those of the

n-master nodes in 7"  denoted as 6@, and A@,, a = 1,...,n, respectively, as
40, AO,
06, AB,;
60, == . , A@, = . (3.65)

40, AO,
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Furthermore we introduce the following operators

1 he
—Ni(€) (1= he) Ni(€)
To = : , Te= . ) (3.66)
—N.(€) (1—he) N.(6)
where h. is the relative effusivity of the slave surface and N,, a = 1,...,n are the standard

isoparametric shape functions of the arbitrary n-node master element.
With the preceding notation in hand, and using the key discrete relations,

59? =Ty - 66O,

3.67
56?; . TG . 5@c ( )

the thermal frictional con tact residualR!"" takes the expression,
R = —Qy. To + Dyic To (3.68)

The thermal frictional contact tangent operator can be split into the conduction KEZ‘”"
and frictional dissipation K" contributions.

ther __ ther ther
K" =K'+ K_' (3.69)

Additionally , from the thermalmaterial and geometric terms in the bilinear form (3.15), the
thermal normal contact and frictional tangent operators, can be split as

ther ,__ ther,mat ther,geo
Kher = thermaet 4 geth

ther ,__ ther,mat ther,geo
K = K" + K

(3.70)
where K!"¢m™ and K!'"9° are the material and geometric contributions to the thermal
normal con tact tangent operator, respectiely, and K'»™% and K!""9¢ are the material
and geometric con tributions to the thermal frictional tangen t operator, respectety.

Using the thermal operators defined above, the thermal normal contact tangent operators
can be written as

Kzzcr’m“t = ;L(th+179Gn+1)H(gNn+1) To ®Toe

+ 89Gh(th+1 ) 9Gn+1) To ® Tg (371)

ther,geo ,__
Kiheraco .=

where the last expression arise from the fact that A(dge) = 0 for a fixed configuration.
The thermal frictional tangent operators take the form

ther,mat ,__
KéT Y= =09, Diric Tc @ T

ther,geo ,__
Kheroeo .= 0

(3.72)

where the last expression arise from the fact that a constant effusivity parameter has been
implicitly assumed and then A(§0g) = 0 for a fixed configuration.

(B) Application: Residual and tangen t operator for a n-node 2D surface element dis-
cretization. Here we will present the finite elemen t implemetntion of the frictional contact
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model, assuming an arbitrary n-node finite elemen t 2D spatial discretization of comact
(master) surfaces. Furthermore, w e will assume that nodal quadrature is used to define
(3.50).

In what follows, we will restrict our atten tion to a typical slave quadrature point, i.e. a
slave node using nodal quadrature, with curren t placemet denoted as # and to the n-node
master element surface containing its projection 7 € 7", denoted as y»". It is assumed
that the projection point ¥ lies in the interior domain of the surface element (",

W e will denote ascontact element the set of nodes consisting of the slave node (playing
the role of quadrature point) and the n-master nodes defining the surface element (",
Taking the nodal displacemen ts as nodal degrees of freedom w will get the mechanical
contact element while taking the nodal temperatures as nodal degrees of freedom we will
get the thermal c ontact element

(B.1) Mec hanical contact elemet. Associated to each contact elemert we define the
vectors of nodal variations §&. and A, containing the variation of the slave (quadrature)
node, denoted as §d, and Ad, respectively, and those of the n-master nodes in (" denoted
as dd, and Ad,, a =1,...,n, respectively, as

5d, Ad,
6d1 Adl

o0, = . , Ad, = . (3.73)
5d,, Ad,

Furthermore we introduce the following operators

v 'l 0
—N.(€) v —Ni(§) ™ —Ny,; (§) v
N - . 5 T1 - . ) Nl - . 3 (374)
—N,(&) v —N, (&) m —N,, (&) v
where N,, a = 1,...,n, are the standard isoparametric shape functions of the arbitrary

n-node elemen t. Using the operators in troduced above, avalso define:

Dl = All(T]_ + gNNl)

_ L (3.75)
N1 = N1 — K/llD
were, A! is the inverse of A;; = my; + gy K11
With the preceding notation in hand, and using the key discrete relations,
Sgy == —N - &,
v = (3.76)
8" :=D" -6,
the frictional contact residual R, takes the expression,
R.:=ty N —tp, D' (3.77)

The frictional con tact tangent operator can be split itto the normal and tangent contri-

butions.
K. =K., +K., (3.78)
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Additionally , from thematerial and geometric terms in the bilinear form (3.15), the normal
contact and frictional tangent operators, can be split as

— mat eo
KCN T KC[\, + ng\/ (3 79)
o mat geo :
K., =K. "+ K

where K** and K¢° are the material and geometric contributions to the normal contact
tangent operator, respectively, and K"* and KJ° are the material and geometric contri-
butions to the frictional tangent operator, respectively.

Using the operators defined abo ve, the normal con tact tangent operators can be written
as

K" :=eyH(gn) NOQN (3.80)
K/ =ty [gn m" N, ® N, — (D' ® Ny + N; ® D') + k1, D' ® D'] '
To define the frictional tangent operators, ve introduce first the following operators:
T, =07, =N, (&) 7, ..., —Noa(§) =17
Nll = [OT, _Nl,ll (E)VT, ceey T n’ll(@l/T]T (381)
Pl = [OTJ _Nl,l(g) pijTa ceey T n,l(g_) p’l_)TT]T

where the shape functions are ev aluated at{. Based on the definitions (3.74),(3.75) and
(3.81), we introduce the additional operators

Ty =Ty — (el,l(é) 'Tl)Dl
131 =P — (el,l(@ 'pZ“)Dl

N (3.82)
Ty, =T + gyvNu
D' = D' —m"T
With the preceding notation in hand, and using the key discrete relations,
(6" = 8" 1y = Ty - 5,
5(,0?12)h v = —Nj - 6P,
50" B (3.83)
v ~T1= —Ty, - 6P,
590ff£h V= —N]_]_ . 5456

the geometric part of the frictional tangen t operator can be written as

Ko =ty AMKI

K{ =T, @ D'+ D' ® T
+D'®T, + T, ® D! (3.84)
—(N®N; + N;® N)
—(e11(8) -1+ gy er11(€) -v) D' @ D
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The material part of the frictional tangent operator will depend of the slip/stic k frictional
state. Using the abo ve definitions, the stick material frictional tangen t operator, denoted
as K"*"%* and the slip material frictional tangen t operator, denoted asK"**"*#  can be
written as

K:T_at’StiCk = 511 Dl ® D1
KZ-M’SHP = —(1—f) pla) ey H(gy) pr, D' QN
+ 1 5 D' @ D! (3.85)
B _
—[ue) ty — —5r-] D'® P,
ez |l

where () = 81 Oqp(a) ty and fy := By Oopu(a) ty and By and B, are given in (3.45).

REMARK 3.6. Linear surface elements. Note that for the particular case of 2-node linear
surface finite elemen ts,N;; = 0, e;; = 0, k1; = 0, €1, = 0, By, = 0, A" = m!'! and
Sy = ep M. l:l

(B.2) Thermal con tact elemen tThe thermal con tact finite elemen t matrices and v ectors
for a 2D surface element discretization are the same than the ones giv en abow for the
general 3D surface element discretization.

4. NUMERICAL SIMULATIONS

The form ulation presented in the preceding sections is illustrated belw in a number of
numerical simulations. The goals are to provide a practical accuracy assessmert of the
thermal frictional con tact model and to demonstrate the robustness of the werall frictional
contact form ulation in differet numerical simulations and particularly in metal forming
operations. The calculations are performed with an enhanced version of the finite elemen t
program FEAP developed by R.L. T aylor and J.C. Simo and documeted in Zienkiewicz &
Taylor (1991).

(A) Frictional Heating of a Block on a Rigid Surface. This example is taken from
W riggers & Miehe (1992) and is concerned mainly with the mehanism of heating due
to frictional dissipation. W e consider an elastic block sliding over a rigid block. Both bodies
are considered to be heat conductors. The upper body, a square blok of 1.25 mm, moves
within 3.75-107% s from the left to the righ t end of the lower block. This lower blkds a
rectangle of 5.00 mm length by 1.25 mm height. During this process a pressure of 10 N/mm?
is applied on the top of the upper block. Both bodies are considered to be of aluminium.
The material parameters for aluminium are given in Table IV.1. Frictional behavior at
the interface is considered through a constant frictional coefficiert of 0.2 within a Coulomb
frictional model.

The geometry of the problem was modeled with 25 continuum elements being utilized for
the discretization of the upper elastic block and 100 continuum elements being utilized for
the discretization of the low er rigid blok. Frictional contact constraints w ere regularized by
means of penalt y method and the normal and tangemial penalty parameters w ere taém as
ey =1-10° N/mm2 and er = 1-10° N/1r111r127 respectively. The displacement of the upper
block has been imposed b y prescribing the driving tangen tial displacemen ts at the top of the
upper block. The sliding process has been ac hieved in 100 time steps. The sides of the bloks
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Bulk Modulus

k = 58,333 N/mm?

Shear Modulus

G = 26,926 N/mm?

Densit y

po=2.7-10"° N s*/mm?*

Thermal Expansion Coefficient

a=2386-10"° K1

Thermal Conductivity

k=150 N/s K

Thermal Capacity

c=0.9-10" mm?/s® K

Thermal Resistance Coeflicient

heo = 150 N/s K

Vic kers Hardness

H, =932 N/mm?

Exponent

e=0.95

Relative Thermal Effusivity

he=0.5

Table IV.1. Aluminium material properties

which are not in contact have been assumed thermally isolated. Heat conduction flux and
frictional dissipation heat source at the contact interface have been considered. Plane strain
conditions have been assumed in the analysis. A fractional step method, arising from an
(isothermal) operator split of the momentum and reduced dissipation balance equations, was
used to solve the coupled thermomechanical nonlinear system of equations. The Newton-
Raphson method, combined with a line searc h optimization procedure, vas used to solve
the nonlinear system of equations arising from the spatial and temporal discretization of
the weak form of the momentum and reduced dissipation balance equations. Con vergence
of the incremen tal iterative solution procedure w as monitored b y requiring a tolerance of

107%" in the energy norm.

Table IV.2 shows the FEuclidean norm of the residual at three gpical mec hanical +
thermal time steps. For each step, the boldface line separates the mec hanical and thermal
entries of the Euclidean norm of the residual obtained in the solution of the mechanical and

thermal problem, respectively.

Step 20

Step 50

Step 80

1.67464E4-03

1.67464E4-03

1.67463E4-03

1.48534E4-02

1.48549E4-02

1.48556 402

3.27963E+01

3.27688E+01

3.27540E+01

1.25703E4-02

1.25322E4-02

1.25152E4-02

5.26016E+00

5.18675E+00

5.15008E+00

4.78359E-03 4.60015E-03 4.50579E-03
1.90039E-09 1.79104E-09 1.74612E-09
3.77591E402 3.53182E+02 3.59583E+02
4.11398E-02 3.20033E-02 3.93119E-02
9.07564E-10 6.40018E-10 9.97886E-10

Table IV.2. Frictional Heating of an Elastic Block on a Rigid Surface. Euclidean norm of

the residual at three typical mec hanical + thermal time steps

Figures 4.1 and 4.2 show the (relative) temperature distribution and v ertical componen t
of the heat flux, respectively, for each one of the blocks, at three different stages of the sliding
process: (a) Step=20, Time=7.500 - 10~*; (b) Step=>50, Time=1.875 - 107%; (¢) Step=100,

Time=3.000-1073.
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TEMPERATURE
Min = -7 40E-02
Max = 3 24E-00

1.00E-01

1.0BE+00
2.06E+00
3 4E+00
4 02E+00
5.00E+00

TEMPERATURE
Min = -3.80E-02
Max = 4.72E+00

1.00E-01

1.08E+00
2.06E+00
3.04E+00
4 02E+00
5.00E+00

TEMFERATURE
Min = -7 32E-02
Max = 5.63E+00

1.00E-01

1.08E+00
2.06E+00
3.04E4+00
4.02E+00
5.00E+DD

Figure 4.1. Frictional Heating of an Elastic Block on a Rigid Surface. Relative tem-
perature distribution at three different stages of the sliding process: (a)
Step=20, Time="7.500 - 10~*; (b) Step=50, Time=1.875 - 1073; (c) Step=100,
Time=3.000-107°
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HEAT FLUX - 2
Min = -8.4SE+02
Max = 1.38E+03

-5.00E+02
-2.00E+02
1.00E+02
4 00E+02
7.00E+02
1.00E+03

HEAT FLUX-Z
Min = -8.80E+02
Meox = 1.52E+03

-5.00E+02
-2.00E+02
1.00E+02
4 00E+02
7.00E+02
1.00E+03

HEAT FLUX - Z
Min = -8.75E+02
Max = 1.57E+03

-5 O0E+02
-2.00E+02
1.00E+02
4.00E+02
7 ODE+02
1.00E+03

Figure 4.2. Frictional Heating of an Elastic Block on a Rigid Surface. Vertical
heat flux distribution at three different stages of the sliding process: (a)
Step=20, Time=7.500 - 10~*; (b) Step=50, Time=1.875 - 107%; (c) Step=100,
Time=3.000 - 10~°
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Figures 4.3 and 4.4 show the frictional dissipation and con tact pressure at the cotact
interface, at the same three differen t stages of the sliding process.

(B) Upsetting of a Billet. This example is tak en from Wiggers & Miehe (1992) and
is concerned with the n umerical similation of the thermoplastic upsetting process of an
aluminium block. The block is pressed between two rigid plates which are able to conduct
heat. Within this process heating of the block occurs due to plastic internal dissipation
within the bloc k and frictional dissipation on the coitact surface. W e consider a thermo-
plastic model of J,;-flow at finite strains, with a logarithmic stored free energy function
and isotropic saturation hardening com bined with thermal softening, summarized in k-
ble IV.3. This model falls within the format of the general class of models for multiplicative
plasticity described in Section 2, with the plastic incompressibility constraint det[F?] = 1
enforced. Then J := det[F] = det[F*] and we denote as b¢ := J 2/3 b° the volume preserv-
ing part of the elastic left Cauc hy-Green tensorb®. See Simo (1992,1994) and Armero &
Simo (1992b,1993) for a detailed description of a particular class of exponen tial return map-
ping algorithms for multiplicative plasticity, which preserve the classical scheme of return
mapping algorithms developed for infinitesimal plasticit y. The material properties for the
aluminium are given in Table IV.1. An initial uniform thermal distribution at the reference
temperature @y = 293.15 K has been assumed. Plastic behavior is characterized by an
isotropic linear hardening law with initial yield stress at reference temperature y,(@,) = 70
MP a and hardening parameter at reference temperatureh(©,) = 210 MPa. Linear thermal
softening is given by the thermal softening parameters wy = 3 -107* and w; = 3 - 107*.
Frictional behavior at the interface is considered through a constant frictional coefficieti of
0.2 within a Coulomb frictional model.

Due to symmetry only one quarter of the system was discretized using 50 finite elemen ts
in the block and 60 finite elemen ts in the rigid plate. The Q1/E12 assumed enhanced strain
tri-linear finite elemen t at finite deformations dev eloped by Simo, Armero & &Flor (1993)
w as used for the discretization of the billet. The finite elemert mesh size used for the bloc k
in Wriggers & Miehe (1992) was not small enough to capture the temperature distribution
generated by heat conduction and frictional dissipation at the con tact surface, for high
values of the billet height reduction. The billet is deformed within a time of 0.0035 s. The
upsetting process has been achieved by prescribing the vertical displacemen t of the rigid
plates. The upsetting of the bloc k, up to a final billet height reduction of 60%, has been
achieved in 100 time steps.

Time in tegration of the coupled thermoplastic problem ws performed using a staggered
algorithm based on an isothermal operator split of the governing equations. Time integration
of the transient thermal equations, as w ell as the internal variables, has been done using
a Backward-Euler time-stepping algorithm. The Newton-Raphson method, combined with
a line search optimization procedure, was used to solve the nonlinear systems of equations
arising from the spatial and temporal discretization of the weak form of the momentum
balance and reduced energy equations. Convergence of the incremen tal iterative solution
procedure w as monitored b y requiring a tolerance of 10? in the energy norm.

The analysis w as performed in a Silicon Graphics Bwer Challenge L Workstation and
it was accomplished in 7 : 58 min CPU time. Table IV.4 sho ws the Euclidean norm of the
residual at three typical mec hanical + thermal time steps. Br each step, the boldface line
separates the mec hanical and thermal en tries of the Euclidean norm of the residual obtained
in the solution of the mec hanical and thermal problem, respectiely.

Figures 4.5 and 4.6 show the (relative) temperature and equiulent plastic strain dis-
tribution, respectively, at different stages of the upsetting process, corresponding to billet
height reductions of 30%, 45% and 60%.
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FRICT. DISS
Min = 0.00E+D0
Max = 3.28E+00

1.50E+00
3.00E+00
4 50E+00
6.00E+00
7.50E+00
8.00E+00

FRICT. DISS
Min = 0.00E+00
Max = B.14E+00

1.50E+00
3.00E+00
4 BOE+00
6.00E+00
7.50E+00
9.00E+00
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Min = 0.00E+00
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6.00E+00
7.50E+00
8.00E-00

Figure 4.3. Frictional Heating of an Elastic Bloc k on a Rigid Surface. Frictional dissipa-
tion distribution at the contact interface at three different stages of the sliding
process: (a) Step=20, Time=7.500-107*; (b) Step=50, Time=1.875-1072; (c)
Step=100, Time=3.000-107°



CONTACT PRESSURE
Min = 0.00E+00
Max = 2 17E+01

3.00E+00
6.00E+00
9.00E+00
1.20E+0
1.50E+01
1.80E+01

CONTACT PRESSURE
Min = 0.00E+00
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Figure 4.4. Frictional Heating of an Elastic Bloc k on a Rigid Surface. Con tact pressure dis-
tribution at the contact interface at three different stages of the sliding process:
(a) Step=20, Time=7.500-10"%; (b) Step=50, Time=1.875-10"%; (c) Step=100,
Time=3.000- 10°

C. Agelet de Saracibar
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1. Free energy function:
$(b°,€,0) = W(b) + U(J) + M(J,0) + T(0) + K(£,0),
i. Logarithmic h yperelastic response ft > 0 and x > 0 constants),
- 1
(B)=p D logy)]  and  U(J)=;xlog’J,

— A=1.3
where X4 = J~1/3 X4 and )4 are the elastic principal stretches.

ii. Thermoelastic coupling,
M(J,0) = =3ka(O — Oy) log J.
iii. Thermal con tribution,
T(O) =c[(@ — 6y) —Olog(©/6y)].

iv. Hardening poten tial,

K(£,0) = ( )& = [ (0) — y=(O)] H(8),

H(E) = {g,— (1 —exp™®)/s, ggig

where

2. Plastic response:

i. Von Mises yield criterion with flow stress oy (©) := y,(0),

Taﬁa \[‘ldeV[T || +/B _JY( ) = 7

ii. Hardening v ariablef conjugate to &,

B = —0:p = —[M(O)¢ — (%o(O) — Y (0))(1 — exp *)].
iii. Linear thermal softening,
Y%0(0) = 40 (Oo)[1 — w (O — O]
hO) = h(E)[1 — wi(O — )]
ybO(@) = yx(@o)[l - wh(@ - @0)]

Table IV.3. Thermoplastic model: Jz-flow theory

Figures 4.7 and 4.8 show the frictional dissipation and con tact pressure distribution,
respectively, at the contact surface, at the same differen t stages of the upsetting process.
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Step 50

Step 75

Step 100

8.15773E4-02

8.13804E4-02

8.05270E4-02

5.91627E4-01

6.20615E4-01

6.78419E4-01

1.26919E4-01

3.25550E4-01

6.89033E4-01

1.21883E4-00

7.96927E4-00

3.43222E4-01

1.11981E-02 1.41444E-01 5.82032E4-00
9.33841E-07 6.39979E-05 6.48231E-02
9.66732E-11 9.39676E-11 1.90928E-05

1.20049E-10

1.45432E4-04

2.75136E4-04

7.88499E4-04

1.03186E4-01

4.29962E+01

3.91760E4-02

1.09560E-05

1.88359E-04

2.21231E-02

8.65355E-10

8.86778E-10

9.28287E-10

Table IV.4. Upsetting of a Billet. Euclidean norm of the residual for three t ypical mec hanical
+ thermal time steps

5. CONCLUDING REMARKS

A numerical model for the analysis of coupled thermomechanical m ulti-body frictional
contact problems at finite deformations has been presented. The m ulti-body frictional
contact form ulation has been fully developed on a continuum setting within a fully non-
linear kinematics. A contact pressure and temperature dependen t thermal con tact model
has been considered.

The solution of the coupled problem was performed within the context of fractional step
methods b y a product form ula algorithm arising from an operator split of the local eslution
governing equations. This method leads to a partitioning of the coupled problem into a
mechanical phase and a thermal phase to be solv ed sequentially by a staggered algorithm.

Within the context of the displacemen t-driven form ulation of frictional contact prob-
lems, exploiting the computational framework developed for plasticity, two frictional return
mapping algorithms have been considered: the BE and the implicit PMP rules. An ex-
act linearization of the algorithms allo ws to derive the consistent frictional contact tangent
operator.

Numerical simulations shown the suitabilit y of the proposed model to deal with the
analysis of fully coupled thermomechanical problems.
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Figure 4.5. Upsetting of a Billet. Temperature distribution at three different time steps,
corresponding to billet height reductions of 30%, 45% and 60%
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Figure 4.6. Upsetting of a Billet. Equivalent plastic strain distribution at three different
time steps, corresponding to billet heigh t reductions of 30%, 45% and 60%
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Figure 4.7. Upsetting of a Billet. Frictional dissipation distribution at the contact surface

for three different time steps, corresponding to billet height reductions of 30%,
45% and 60%
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Figure 4.8. Upsetting of a Billet. Contact pressure distribution at the contact surface for

three different time steps, corresponding to billet heigh t reductions of 30%, 45%
and 60%
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