7 research outputs found

    Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge?

    No full text
    The French Society of Pathology (SFP) organized its first data challenge in 2020 with the help of the Health Data Hub (HDH). The organization of this event first consisted of recruiting nearly 5000 cervical biopsy slides obtained from 20 pathology centers. After ensuring that patients did not refuse to include their slides in the project, the slides were anonymized, digitized, and annotated by expert pathologists, and finally uploaded to a data challenge platform for competitors from around the world. Competing teams had to develop algorithms that could distinguish 4 diagnostic classes in cervical epithelial lesions. Among the many submissions from competitors, the best algorithms achieved an overall score close to 95%. The final part of the competition lasted only 6 weeks, and the goal of SFP and HDH is now to allow for the collection to be published in open access for the scientific community. In this report, we have performed a “post-competition analysis” of the results. We first described the algorithmic pipelines of 3 top competitors. We then analyzed several difficult cases that even the top competitors could not predict correctly. A medical committee of several expert pathologists looked for possible explanations for these erroneous results by reviewing the images, and we present their findings here targeted for a large audience of pathologists and data scientists in the field of digital pathology

    Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma

    No full text
    International audienceCholangiocarcinoma (CCA) results from the malignant transformation of cholangiocytes. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic diseases in which cholangiocytes are primarily damaged. Although PSC is an inflammatory condition predisposing to CCA, CCA is almost never found in the autoimmune context of PBC. Here, we hypothesized that PBC might favor CCA immunosurveillance. In preclinical murine models of cholangitis challenged with syngeneic CCA, PBC (but not PSC) reduced the frequency of CCA development and delayed tumor growth kinetics. This PBC-related effect appeared specific to CCA as it was not observed against other cancers, including hepatocellular carcinoma. The protective effect of PBC was relying on type 1 and type 2 T cell responses and, to a lesser extent, on B cells. Single-cell TCR/RNA sequencing revealed the existence of TCR clonotypes shared between the liver and CCA tumor of a PBC host. Altogether, these results evidence a mechanistic overlapping between autoimmunity and cancer immunosurveillance in the biliary tract

    Meet-U: Educating through research immersion.

    No full text
    We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology. Meet-U promotes "coopetition," as the students collaborate within and across the teams and are also in competition with each other to develop the best final product. Meet-U fosters interactions between different actors of education and research through the organization of a meeting day, open to everyone, where the students present their work to a jury of researchers and jury members give research seminars. This very unique combination of education and research is strongly motivating for the students and provides a formidable opportunity for a scientific community to unite and increase its visibility. We report on our experience with Meet-U in two French universities with master's students in bioinformatics and modeling, with protein-protein docking as the subject of the course. Meet-U is easy to implement and can be straightforwardly transferred to other fields and/or universities. All the information and data are available at www.meet-u.org

    Examples of strategies and results for the 2016–2017 edition.

    No full text
    <p>Left panel: Team B implemented an efficient sampling algorithm using a grid representation of the proteins to be docked and FFT. For the scoring, they used evolutionary information extracted from multiple sequence alignments of homologs of the two partners. Right panel: Team D used biological knowledge during the sampling step to filter out conformations early and drastically reduce the search space. The results obtained by the students (Teams B and D) on two complexes (barnase–barstar complex, Protein Data Bank [PDB] code: 1AY7, and an antibody–antigen complex, PDB code: 1JPS, respectively) are comparable to those obtained from state-of-the-art methods, namely ZDOCK [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005992#pcbi.1005992.ref010" target="_blank">10</a>] and ATTRACT [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005992#pcbi.1005992.ref011" target="_blank">11</a>]. ZDOCK relies on efficient sampling using FFT and on an optimized energy function [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005992#pcbi.1005992.ref010" target="_blank">10</a>]. ATTRACT proceeds through minimization steps using an empirical, coarse-grained molecular mechanics potential [<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1005992#pcbi.1005992.ref011" target="_blank">11</a>]. Candidate conformations for the complexes are represented as cartoons and superimposed onto the known crystallographic structures. The receptor is in black, the ligand from the candidate conformation is colored (in orange for Meet-U students, blue for ZDOCK, and purple for ATTRACT), and that from the crystallographic structure is in grey. With each candidate conformation are associated its rank, according to the scoring function of the method, and its deviation (in Å) from the crystallographic structure. FFT, Fast Fourier Transform; PDB, protein data bank.</p

    Relationship between serotypes, disease characteristics and 30-day mortality in adults with invasive pneumococcal disease

    No full text
    International audienc
    corecore