10 research outputs found

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    Preclinical lead optimization of a 1,2,4-triazole based tankyrase inhibitor

    No full text
    Tankyrases 1 and 2 are central biotargets in the WNT/β-catenin signaling and Hippo signaling pathways. We have previously developed tankyrase inhibitors bearing a 1,2,4-triazole moiety and binding predominantly to the adenosine binding site of the tankyrase catalytic domain. Here we describe a systematic structure-guided lead optimization approach of these tankyrase inhibitors. The central 1,2,4-triazole template and trans-cyclobutyl linker of the lead compound 1 were left unchanged, while side-group East, West, and South moieties were altered by introducing different building blocks defined as point mutations. The systematic study provided a novel series of compounds reaching picomolar IC(50) inhibition in WNT/β-catenin signaling cellular reporter assay. The novel optimized lead 13 resolves previous atropisomerism, solubility, and Caco-2 efflux liabilities. 13 shows a favorable ADME profile, including improved Caco-2 permeability and oral bioavailability in mice, and exhibits antiproliferative efficacy in the colon cancer cell line COLO 320DM in vitro

    Preclinical lead optimization of a 1,2,4-triazole based tankyrase inhibitor

    No full text
    Abstract Tankyrases 1 and 2 are central biotargets in the WNT/β-catenin signaling and Hippo signaling pathways. We have previously developed tankyrase inhibitors bearing a 1,2,4-triazole moiety and binding predominantly to the adenosine binding site of the tankyrase catalytic domain. Here we describe a systematic structure-guided lead optimization approach of these tankyrase inhibitors. The central 1,2,4-triazole template and trans-cyclobutyl linker of the lead compound 1 were left unchanged, while side-group East, West, and South moieties were altered by introducing different building blocks defined as point mutations. The systematic study provided a novel series of compounds reaching picomolar IC₃₀ inhibition in WNT/β-catenin signaling cellular reporter assay. The novel optimized lead 13 resolves previous atropisomerism, solubility, and Caco-2 efflux liabilities. 13 shows a favorable ADME profile, including improved Caco-2 permeability and oral bioavailability in mice, and exhibits antiproliferative efficacy in the colon cancer cell line COLO 320DM in vitro

    Development of a 1,2,4-triazole-based lead tankyrase inhibitor:part II

    No full text
    Abstract Tankyrase 1 and 2 (TNKS1/2) catalyze post-translational modification by poly-ADP-ribosylation of a plethora of target proteins. In this function, TNKS1/2 also impact the WNT/β-catenin and Hippo signaling pathways that are involved in numerous human disease conditions including cancer. Targeting TNKS1/2 with small-molecule inhibitors shows promising potential to modulate the involved pathways, thereby potentiating disease intervention. Based on our 1,2,4-triazole-based lead compound 1 (OM-1700), further structure–activity relationship analyses of East-, South- and West-single-point alterations and hybrids identified compound 24 (OM-153). Compound 24 showed picomolar IC₅₉ inhibition in a cellular (HEK293) WNT/β-catenin signaling reporter assay, no off-target liabilities, overall favorable absorption, distribution, metabolism, and excretion (ADME) properties, and an improved pharmacokinetic profile in mice. Moreover, treatment with compound 24 induced dose-dependent biomarker engagement and reduced cell growth in the colon cancer cell line COLO 320DM

    Therapeutic mammaplasty is a safe and effective alternative to mastectomy with or without immediate breast reconstruction

    No full text
    Background: Therapeutic mammaplasty (TM) may be an alternative to mastectomy, but few well designed studies have evaluated the success of this approach or compared the short-term outcomes of TM with mastectomy with or without immediate breast reconstruction (IBR). Data from the national iBRA-2 and TeaM studies were combined to compare the safety and short-term outcomes of TM and mastectomy with or without IBR. Methods: The subgroup of patients in the TeaM study who underwent TM to avoid mastectomy were identified, and data on demographics, complications, oncology and adjuvant treatment were compared with those of patients undergoing mastectomy with or without IBR in the iBRA-2 study. The primary outcome was the percentage of successful breast-conserving procedures in the TM group. Secondary outcomes included postoperative complications and time to adjuvant therapy. Results: A total of 2916 patients (TM 376; mastectomy 1532; mastectomy and IBR 1008) were included in the analysis. Patients undergoing TM were more likely to be obese and to have undergone bilateral surgery than those having IBR. However, patients undergoing mastectomy with or without IBR were more likely to experience complications than the TM group (TM: 79, 21·0 per cent; mastectomy: 570, 37·2 per cent; mastectomy and IBR: 359, 35·6 per cent; P < 0·001). Breast conservation was possible in 87·0 per cent of patients who had TM, and TM did not delay adjuvant treatment. Conclusion: TM may allow high-risk patients who would not be candidates for IBR to avoid mastectomy safely. Further work is needed to explore the comparative patient-reported and cosmetic outcomes of the different approaches, and to establish long-term oncological safety
    corecore