53 research outputs found

    Facultative Symbiont Infections Affect Aphid Reproduction

    Get PDF
    Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia)

    No full text
    International audienceUnderstanding the effects of trace metals emitted by anthropogenic activities on wildlife is of great concern in urban ecology; yet, information on how they affect individuals, populations, communities and ecosystems remains scarce. In particular, trace metals may impact survival by altering the immune system response to parasites. Plumage melanin is assumed to influence the effects of trace metals on immunity owing to its ability to bind metal ions in feathers and its synthesis being coded by a pleiotropic gene. We thus hypothesized that trace metal exposure would interact with plumage colouration in shaping immune response. We experimentally investigated the interactive effect between exposure to an environmentally relevant range of zinc and/or lead and melanin-based plumage colouration on components of the immune system in feral pigeons (Columba livia). We found that zinc increased anti-keyhole limpet hemocyanin (KLH) IgY primary response maintenance, buffered the negative effect of lead on anti-KLH IgY secondary response maintenance and tended to increase T-cell mediated phytohaemagglutinin (PHA) skin response. Lead decreased the peak of the anti-KLH IgY secondary response. In addition, pheomelanic pigeons exhibited a higher secondary anti-KLH IgY response than did eumelanic ones. Finally, T-cell mediated PHA skin response decreased with increasing plumage eumelanin level of birds exposed to lead. Neither treatments nor plumage colouration correlated with endoparasite intensity. Overall, our study points out the effects of trace metals on some parameters of birds' immunity, independently from other confounding urbanization factors, and underlines the need to investigate their impacts on other life history traits and their consequences in the ecology and evolution of host-parasite interactions

    Spécialisation écologique du puceron du pois, Acyrthosiphon pisum (différenciation génétique et phénotypique entre races d'hôtes)

    No full text
    La spéciation sympatrique, i.e. la divergence des populations sans isolement géographique, reste un domaine controversé de la biologie évolutive. La spéciation par changement d'hôte, documentée chez les insectes phytophages, constitue le scénario le plus plausible de la divergence génétique entre races d'hôtes. Peu d'études cependant se sont intéressées à leur caractérisation phénotypique. Le présent travail a consisté en l'étude de la divergence génétique et phénotypique entre populations du puceron du pois, Acyrthosiphon pisum, récoltées sur diverses plantes-hôte dans le bassin rennais. Trois clusters génétiques ont été observés, provenant respectivement du pois et de la féverole, du trèfle violet et de la luzerne. Ces clusters divergent en outre sur chacun des traits phénotypiques mesurés (investissement dans la reproduction sexuée, phénotype de dispersion des mâles, endosymbiotes hébergés), vraisemblablement du fait des conditions environnementales différentes entre les habitats.RENNES1-BU Sciences Philo (352382102) / SudocSudocFranceF

    Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon

    No full text
    Bacteria are fundamental associates of animals, and recent studies have highlighted their major role in host behaviour, immunity or reproductive investment. Thus, any environmental factor modifying bacterial community may affect host fitness. In birds, trace metals emitted by anthropogenic activities accumulate onto the plumage where they may alter bacterial community and ultimately affect bird fitness. Although trace metals are current major environmental issues in urban habitats, their effects on feather bacterial community have never been investigated. Here, we supplemented feral pigeons (Columba livia), an emblematic urban species, with zinc and/or lead in drinking and bath water. As expected, lead and zinc supplementations modified plumage bacterial community composition. Zinc decreased bacterial load, while lead decreased bacterial richness and the frequency of preening behaviour in birds, known to regulate feather bacteria. Our results demonstrate for the first time the effects of common urban trace metals on plumage bacterial community and shed light on one of the mechanisms by which trace metals can affect bird fitness. Further studies are now needed to investigate how this effect modulates avian life history traits known to depend on plumage bacterial community

    Data from: Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon

    No full text
    Bacteria are fundamental associates of animals, and recent studies have highlighted their major role in host behaviour, immunity or reproductive investment. Thus, any environmental factor modifying bacterial community may affect host fitness. In birds, trace metals emitted by anthropogenic activities accumulate onto the plumage where they may alter bacterial community and ultimately affect bird fitness. Although trace metals are current major environmental issues in urban habitats, their effects on feather bacterial community have never been investigated. Here, we supplemented feral pigeons Columba livia, an emblematic urban species, with zinc and/or lead in drinking and bath water. As expected, lead and zinc supplementations modified plumage bacterial community composition. Zinc decreased bacterial load, while lead decreased bacterial richness and the frequency of preening behaviour in birds, known to regulate feather bacteria. Our results demonstrate for the first time the effects of common urban trace metals on plumage bacterial community and shed light on one of the mechanisms by which trace metals can affect bird fitness. Further studies are now needed to investigate how this effect modulates avian life history traits known to depend on plumage bacterial community

    Ecological specialization correlates with genotypic differentiation in sympatric host-populations of the pea aphid

    No full text
    International audienceThe pea aphid, Acyrthosiphon pisum, encompasses distinct host races specialized on various Fabaceae species, but the extent of genetic divergence associated with ecological specialization varies greatly depending on plant and geographic origins of aphid populations. Here, we studied the genetic structure of French sympatric pea aphid populations collected on perennial (pea and faba bean) and annual (alfalfa and red clover) hosts using 14 microsatellite loci. Classical and Bayesian population genetics analyses consistently identified genetic clusters mostly related to plant origin: the pea/faba bean cluster was highly divergent from the red clover and the alfalfa ones, indicating they represent different stages along the continuum of genetic differentiation. Some genotypes were assigned to a cluster differing from the one expected from their plant origin while others exhibited intermediate genetic characteristics. These results suggest incomplete barriers to gene flow. Howeve! r, this limited gene flow seems insufficient to prevent ecological specialization and genetic differentiation in sympatr

    Do trace metals influence visual signals? Effects of trace metals on iridescent and melanic feather colouration in the feral pigeon

    No full text
    International audienceTrace metals are chemical pollutants of prime concern nowadays given their implication in several human diseases and their noxious effects on wildlife. Previous studies demonstrated their negative (e.g. lead, cadmium) or positive (e.g. zinc) effects on body condition, immunity and reproductive success in birds. Because of their effects on bird condition, trace metals are likely to influence the production of condition-dependent plumage colours, that may be used in mate choice. In the feral pigeon Columba livia, we investigated iridescent colouration in response to lead and zinc experimental (i.e. metal supplementation in standardized conditions) and natural exposure (i.e. metal concentrations in feathers of wild urban pigeons), and melanic feather colouration in response to experimental lead and zinc exposure. Both studies (i.e. experimental and correlative) consistently showed that lead exposure decreased iridescent neck feather brightness independently of colour morph. Moreover, lead, when provided alone, decreased melanic feather reflectance in the middle wavelengths while zinc supplementation increased melanic feather reflectance in the violet-wavelength. In conclusion, our study suggests that the colouration of iridescent and melanic feathers depends on the exposure to pollutants. Whether trace metal exposure affected the ability of birds to produce melanin pigments, to grow the microstructural feather elements required for maximum colour display, or to cope with bacteria that degrade feather microstuctures remains unclear. Future studies should investigate whether these metal-induced modifications of plumage colouration affect behaviours involved in sexual selection

    Sex-associated differences in trace metals concentrations in and on the plumage of a common urban bird species

    No full text
    International audienceUrban areas encompass both favorable and stressful conditions linked with human activities and pollution. Pollutants remain of major ecological importance for synanthropic organisms living in the city. Plumage of urban birds harbour trace metals, which can result from external deposition or from internal accumulation. External and internal plumage concentrations likely differ between specific trace metals, and may further differ between males and females because of potential sex-linked differential urban use, physiology or behaviour. Here, we measured the concentrations in four trace metals (cadmium, copper, lead and zinc) in both unwashed and washed feathers of 49 male and 38 female feral pigeons (Columba livia) from Parisian agglomeration. We found that these concentrations indeed differed between unwashed and washed feathers, between males and females, and for some metals depended on the interaction between these factors. We discuss these results in the light of physiological and behavioural differences between males and females and of spatial repartition of the four trace metals in the city

    More and smaller resting eggs along a gradient for pollution by metals: dispersal, dormancy and detoxification strategies in Daphnia?

    No full text
    International audienceTrace metals are bioavailable, persistent and potentially harmful chemicals commonly found in cities. In metal-polluted habitats, natural populations may evolve adaptations and may be composed of individuals exhibiting detoxification mechanisms, in particular through melanization, dispersal or dormancy abilities. Interestingly, Daphnia cyclically produce chitinous melanized envelopes called 'ephippia' encasing the resting eggs, which allow dispersal in space and in time (dormancy). Moreover, the success of dispersal decreases with increasing ephippial size. We hypothesized that populations living in polluted ponds produce more, darker and smaller ephippia than populations from unpolluted ponds. We sampled 51 ponds distributed in the Paris region and investigated the link between concentrations of seven trace metals and the presence of Daphnia and ephippia, and the size and pigmentation of ephippia. First, the presence of Daphnia was not linked to local metal concentrations, which ranged gradually from low to high values. Second, the probability of the presence of ephippia in sediments increased with metal concentrations, suggesting a selective advantage of Daphnia in producing dormancy stages in polluted habitats. Third, although ephippial pigmentation was not linked to metal concentrations, ephippial size decreased with increasing metal concentrations, suggesting a selection for increased dispersal in polluted habitats. Overall, our results show that anthropogenic pollution may have important microevolutionary consequences in urban populations, which are generally overlooked
    corecore