102 research outputs found

    Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model

    Full text link
    In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the deformed soliton and the kaon.Comment: 24 pages, LaTeX, 8 eps file

    Direct Compression Behavior of Low- and High-Methoxylated Pectins

    Get PDF
    The objective of this study was to evaluate possible usefulness of pectins for direct compression of tablets. The deformation behavior of pectin grades of different degree of methoxylation (DM), namely, 5%, 10%, 25%, 35%, 40%, 50%, and 60% were, examined in terms of yield pressures (YP) derived from Heckel profiles for both compression and decompression and measurements of elastic recovery after ejection. All pectin grades showed a high degree of elastic recovery. DM 60% exhibited most plastic deformation (YP 70.4 MPa) whereas DM 5% (104.6 MPa) and DM 10% (114.7 MPa) least. However, DM 60% gave no coherent tablets, whereas tablet tensile strengths for DM 5% and DM 10% were comparable to Starch 1500®. Also, Heckel profiles were similar to Starch 1500®. For sieved fractions (180–250 and 90–125 μm) of DM 25% and DM 40% originating from the very same batch, YPs were alike, indicating minor effects of particle size. These facts indicate that DM is important for the compaction behavior, and batch-to-batch variability should also be considered. Therefore, pectins of low degree of methoxylation may have a potential as direct compression excipients

    Molybdenum oxide on Fe2O3 Core-Shell catalysts: Probing the nature of the structural motifs responsible for methanol oxidation catalysis

    Get PDF
    A series of MoOx-modified Fe2O3 catalysts have been prepared in an attempt to make core–shell oxidic materials of the type MoOx/Fe2O3. It is conclusively shown that for three monolayers of Mo dosed, the Mo stays in the surface region, even after annealing to high temperature. It is only when the material is annealed above 400 °C that it reacts with the iron oxide. We show by a combination of methods, and especially by XAFS, that at temperatures above 400 °C, most of the Mo converts to Fe2(MoO4)3, with Mo in a tetrahedral structure, whereas below that temperature, nanocrystalline MoO3 is present in the sample; however, the active catalysts have an octahedral MoOx layer at the surface even after calcination to 600 °C. This surface layer appears to be present at all temperatures between 300 and 600 °C, and it is the nanoparticles of MoO3 that are present at the lower temperature that react to form ferric molybdate, which underlies this surface layer. It is the MoOx layer on the Fe2(MoO4)3 underlayer that makes the surface active and selective for formaldehyde synthesis, whereas the iron oxide surface itself is a combustor. The material is both activated and improved in selectivity due to the dominance of the methoxy species on the Mo-doped material, as opposed to the much more stable formate, which is the main intermediate on Fe2O3

    Re-evaluating the measurement and influence of conscious movement processing on gait performance in older adults: development of the Gait-Specific Attentional Profile

    Get PDF
    Background. Recent decades have seen increased interest in how anxiety–and associated changes in conscious movement processing (CMP)–can influence the control of balance and gait, particularly in older adults. However, the most prevalent scale used to measure CMP during gait (the Movement-Specific Reinvestment Scale (MSRS)) is generic (i.e., non-gait specific) and potentially lacks sensitivity in this context. Methods. In a preliminary study, we first sought to evaluate if MSRS scores associated with the number of CMP-related thoughts self-reported by older adults while walking. The next aim was to develop and validate a new questionnaire (the Gait-Specific Attentional Profile, G-SAP) capable of measuring gait-specific CMP, in addition to other attentional processes purported to influence gait. This scale was validated using responses from 117 (exploratory) and 107 (confirmatory factor analysis) older adults, resulting in an 11-item scale with four sub-scales: CMP, anxiety, fall-related ruminations, and processing inefficiencies. Finally, in a separate cohort of 53 older adults, we evaluated associations between scores from both the GSAP CMP subscale and the MSRS, and gait outcomes measured using a GAITRite walkway in addition to participants’ fall-history. Results. MSRS scores were not associated with self-reported thoughts categorised as representing CMP. In regression analyses that controlled for functional balance, unlike the MSRS, the G-SAP subscale of CMP significantly predicted several gait characteristics including velocity (p=.033), step length (p=.032), and double-limb support (p=.015). Significance. The G-SAP provides gait-specific measures of four psychological factors implicated in mediating the control of balance and gait. In particular, unlike the MSRS, the G-SAP subscale of CMP appears sensitive to relevant attentional processes known to influence gait performance. We suggest that the G-SAP offers an opportunity for the research community to further develop understanding of psychological factors impacting gait performance across a range of applied clinical contexts

    Freezing of gait and fall detection in Parkinson’s disease using wearable sensors:a systematic review

    Get PDF
    Despite the large number of studies that have investigated the use of wearable sensors to detect gait disturbances such as Freezing of gait (FOG) and falls, there is little consensus regarding appropriate methodologies for how to optimally apply such devices. Here, an overview of the use of wearable systems to assess FOG and falls in Parkinson’s disease (PD) and validation performance is presented. A systematic search in the PubMed and Web of Science databases was performed using a group of concept key words. The final search was performed in January 2017, and articles were selected based upon a set of eligibility criteria. In total, 27 articles were selected. Of those, 23 related to FOG and 4 to falls. FOG studies were performed in either laboratory or home settings, with sample sizes ranging from 1 PD up to 48 PD presenting Hoehn and Yahr stage from 2 to 4. The shin was the most common sensor location and accelerometer was the most frequently used sensor type. Validity measures ranged from 73–100% for sensitivity and 67–100% for specificity. Falls and fall risk studies were all home-based, including samples sizes of 1 PD up to 107 PD, mostly using one sensor containing accelerometers, worn at various body locations. Despite the promising validation initiatives reported in these studies, they were all performed in relatively small sample sizes, and there was a significant variability in outcomes measured and results reported. Given these limitations, the validation of sensor-derived assessments of PD features would benefit from more focused research efforts, increased collaboration among researchers, aligning data collection protocols, and sharing data sets

    The potential of antisense oligonucleotide therapies for inherited childhood lung diseases.

    Get PDF
    Antisense oligonucleotides are an emerging therapeutic option to treat diseases with known genetic origin. In the age of personalised medicines, antisense oligonucleotides can sometimes be designed to target and bypass or overcome a patient's genetic mutation, in particular those lesions that compromise normal pre-mRNA processing. Antisense oligonucleotides can alter gene expression through a variety of mechanisms as determined by the chemistry and antisense oligomer design. Through targeting the pre-mRNA, antisense oligonucleotides can alter splicing and induce a specific spliceoform or disrupt the reading frame, target an RNA transcript for degradation through RNaseH activation, block ribosome initiation of protein translation or disrupt miRNA function. The recent accelerated approval of eteplirsen (renamed Exondys 51™) by the Food and Drug Administration, for the treatment of Duchenne muscular dystrophy, and nusinersen, for the treatment of spinal muscular atrophy, herald a new and exciting era in splice-switching antisense oligonucleotide applications to treat inherited diseases. This review considers the potential of antisense oligonucleotides to treat inherited lung diseases of childhood with a focus on cystic fibrosis and disorders of surfactant protein metabolism

    Biomarker candidates of neurodegeneration in Parkinson’s disease for the evaluation of disease-modifying therapeutics

    Get PDF
    Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinson’s disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of α-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies
    corecore