13 research outputs found

    New Trends in Designing Parabolic trough Solar Concentrators and Heat Storage Concrete Systems in Solar Power Plants

    Get PDF
    Energy availability has always been an essential component of human civilization and the energetic consumption is directly linked to the produced wealth. In many depressed countries the level of solar radiation is considerably high and it could be the primary energy source under conditions that low cost, simple-to-be-used technologies are employed. Then, it is responsibility of the most advanced countries to develop new equipments to allow this progress for taking place. A large part of the energetic forecast, based on economic projection for the next decades, ensure us that fossil fuel supplies will be largely enough to cover the demand. The predicted and consistent increase in the energetic demand will be more and more covered by a larger use of fossil fuels, without great technology innovations. A series of worrying consequences are involved in the above scenario: important climatic changes are linked to strong CO2 emissions; sustainable development is hindered by some problems linked to certainty of oil and natural gas supply; problems of global poverty are not solved but amplified by the unavoidable increase in fossil fuel prices caused by an increase in demand. These negative aspects can be avoided only if a really innovative and more acceptable technology will be available in the next decades at a suitable level to impress a substantial effect on the society. Solar energy is the ideal candidate to break this vicious circle between economic progress and consequent greenhouse effect. The low penetration on the market shown today by the existent renewable technologies, solar energy included, is explained by well-known reasons: the still high costs of the produced energy and the \u201cdiscontinuity\u201d of both solar and wind energies. These limitations must be removed in reasonable short times, with the support of innovative technologies, in view of such an urgent scenario. On this purpose ENEA, on the basis of the Italian law n. 388/2000, has started an R&D program addressed to the development of CSP (Concentrated Solar Power) systems able to take advantage of solar energy as heat source at high temperature. One of the most relevant objectives of this research program (Rubbia, 2001) is the study of CSP systems operating in the field of medium temperatures (about 550\ub0C), directed towards the development of a new and low-cost technology to concentrate the direct radiation and efficiently convert solar energy into high temperature heat; another aspect is focused on the production of hydrogen by means of thermo-chemical processes at temperatures above 800\ub0C. As well as cost reductions, the current innovative ENEA conception aims to introduce a set of innovations, concerning: i) The parabolic-trough solar collector: an innovative design to reduce production costs, installation and maintenance and to improve thermal efficiency is defined in collaboration with some Italian industries; ii) The heat transfer fluid: the synthetic hydrocarbon oil, which is flammable, expensive and unusable beyond 400\ub0C, is substituted by a mixture of molten salts (sodium and potassium nitrate), widely used in the industrial field and chemically stable up to 600\ub0C; iii) The thermal storage (TES): it allows for the storage of solar energy, which is then used when energy is not directly available from the sun (night and covered sky) (Pilkington, 2000). After some years of R&D activities, ENEA has built an experimental facility (defined within the Italian context as PCS, \u201cProva Collettori Solari\u201d) at the Research Centre of Casaccia in Rome (ENEA, 2003), which incorporates the main proposed innovative elements. The next step is to test these innovations at full scale by means of a demonstration plant, as envisioned by the \u201cArchimede\u201d ENEA/ENEL Project in Sicily. Such a project is designed to upgrade the ENEL thermo-electrical combined-cycle power plant by about 5 MW, using solar thermal energy from concentrating parabolic-trough collectors. Particularly, the Chapter will focus on points i) and iii) above: - loads, actions, and more generally, the whole design procedure for steel components of parabolic-trough solar concentrators will be considered in agreement with the Limit State method, as well as a new approach will be critically and carefully proposed to use this method in designing and testing \u201cspecial structures\u201d such as the one considered here; - concrete tanks durability under prolonged thermal loads and temperature variations will be estimated by means of an upgraded F.E. coupled model for heat and mass transport (plus mechanical balance). The presence of a surrounding soil volume will be additionally accounted for to evaluate environmental risk scenarios. Specific technological innovations will be considered, such as: -higher structural safety related to the reduced settlements coming from the chosen shape of the tank (a below-grade cone shape storage); - employment of HPC containment structures and foundations characterized by lower costs with respect to stainless steel structures; - substitution of highly expensive corrugated steel liners with plane liners taking advantage of the geometric compensation of thermal dilations due to the conical shape of the tank; - possibility of employing freezing passive systems for the concrete basement made of HPC, able to sustain temperature levels higher than those for OPC; - fewer problems when the tank is located on low-strength soils

    Heat Exchange Analysis on Latent Heat Thermal Energy Storage Systems Using Molten Salts and Nanoparticles as Phase Change Materials

    Get PDF
    The increase of carbon dioxide emissions is the most important contributor to climate change. A better use of produced energy, increasing systems efficiency and using renewable sources, can limit them. A key technological issue is to integrate a thermal energy storage (TES). It consists in stocking thermal energy through the heating/cooling of a storage material for future needs. Among various technologies, latent heat TES (LHTES) provides high energy storage density at constant temperature during melting/solidification of storage media. The bottleneck in the use of typical PCMs is their low thermal conductivity. To improve the heat exchange between heat transfer fluid and PCM, three methods are possible and here experimentally analyzed: conductivity systems enhancements; convective flows promotion in liquid phase; and improvement of PCM thermal properties including small amounts of nanoparticles. CFD models were used to evaluate physical phenomena that are crucial for optimized LHTES systems design. The study of the heat exchange mode allowed some useful indications to achieve an optimized LHTES, taking advantage by convective flows and conductivity promotion systems. The use of NEPCM, to maximize the stored energy density and realize compact systems, makes necessary the improvement of its thermal diffusivity. These will be the future research topics

    Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage

    Get PDF
    Abstract In this study, different nanofluids with phase change behavior were developed by mixing a molten salt base fluid (selected as phase change material) with nanoparticles using the direct-synthesis method. The thermal properties of the nanofluids obtained were investigated. These nanofluids can be used in concentrating solar plants with a reduction of storage material if an improvement in the specific heat is achieved. The base salt mixture was a NaNO3-KNO3 (60:40 ratio) binary salt. The nanoparticles used were silica (SiO2), alumina (Al2O3), titania (TiO2), and a mix of silica-alumina (SiO2-Al2O3). Three weight fractions were evaluated: 0.5, 1.0, and 1.5 wt.%. Each nanofluid was prepared in water solution, sonicated, and evaporated. Measurements on thermophysical properties were performed by differential scanning calorimetry analysis and the dispersion of the nanoparticles was analyzed by scanning electron microscopy (SEM). The results obtained show that the addition of 1.0 wt.% of nanoparticles to the base salt increases the specific heat of 15% to 57% in the solid phase and of 1% to 22% in the liquid phase. In particular, this research shows that the addition of silica-alumina nanoparticles has a significant potential for enhancing the thermal storage characteristics of the NaNO3-KNO3 binary salt. These results deviated from the predictions of the theoretical model used. SEM suggests a greater interaction between these nanoparticles and the salt.The authors would like to thank the Italian National Agency for New Technologies, Energy and Sustainable Economic Development for the financial support of this research.Peer Reviewe

    pacchetto software dal titolo: \u201cSoftware simulazione effetti d\u2019incendio e analisi strutturale calcestruzzi (HITECOSP2)\u201d, a nome ENEA e Universit\ue0 degli Studi di Padova

    No full text
    Diritto d\u2019Autore presso SIAE per un\u2019opera inedita pacchetto software dal titolo: \u201cSoftware simulazione effetti d\u2019incendio e analisi strutturale calcestruzzi (HITECOSP2)\u201d, a nome ENEA e Universit\ue0 degli Studi di Padova. Autori: Corsi Franco, Schrefler Bernhard, Giannuzzi Giuseppe Mauro, Majorana Carmelo, Miliozzi Adio e Pesavento Francesco. Roma, Studio Ferrario (Brevetti di Invenzione), 14/12/2006

    Discharging shape influence on the performance of a latent heat thermal energy storage

    No full text
    Due to the mismatching between the renewable energy source and the energy demand, the energy storage devices have attracted the attention of the scientific community in order to maximize their performance. Several technologies have been developed and applied in laboratory scale and prototypes in the last decades. The energy storage devices can be mainly defined according to the average working temperature, the storage material, and the geometrical configuration. This work is focused on the 2D axisymmetric finite volume multiphase numerical simulations of the fluid flow and heat transfer within a shell-and-tube type latent heat thermal energy storage (LHTES). The effect of the geometrical parameters on the thermal performance of such systems is investigated. The influence of the LHTES shape is highlighted keeping constant the heat exchange area, the total storable heat and the heated surface temperature. Detailed description of the liquid fraction and temperature distribution during the solidification phase are reported. The solidification phase appears strongly influenced by the geometry. The geometries have been chosen according to fixed volume and heat exchange area condition. The ratio between the external and the internal radius (r_e/r_i) has been changed and its effect on the thermal performance of the thermal storage device is considered. Thus, according to the application requirement, particular care should be taken in the design of the shape of the LHTES device

    Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas

    No full text
    This paper presents a thermodynamic analysis and techno-economic assessment of a novel hybrid solar-biomass power-generation system configuration composed of an externally fired gas-turbine (EFGT) fuelled by biomass (wood chips) and a bottoming organic Rankine cycle (ORC) plant. The main novelty is related to the heat recovery from the exhaust gases of the EFGT via thermal energy storage (TES), and integration of heat from a parabolic-trough collectors (PTCs) field with molten salts as a heat-transfer fluid (HTF). The presence of a TES between the topping and bottoming cycles facilitates the flexible operation of the system, allows the system to compensate for solar energy input fluctuations, and increases capacity factor and dispatchability. A TES with two molten salt tanks (one cold at 200 °C and one hot at 370 °C) is chosen. The selected bottoming ORC is a superheated recuperative cycle suitable for heat conversion in the operating temperature range of the TES. The whole system is modelled by means of a Python-based software code, and three locations in the Mediterranean area are assumed in order to perform energy-yield analyses: Marseille in France, Priolo Gargallo in Italy and Rabat in Morocco. In each case, the thermal storage that minimizes the levelized cost of energy (LCE) is selected on the basis of the estimated solar radiation and CSP size. The results of the thermodynamic simulations, capital and operational costs assessments and subsidies (feed-in tariffs for biomass and solar electricity available in the Italian framework), allow estimating the global energy conversion efficiency and the investment profitability in the three locations. Sensitivity analyses of the biomass costs, size of PTCs, feed-in tariff and share of cogenerated heat delivered to the load are also performed. The results show that the high investment costs of the CSP section in the proposed size range and hybridization configuration allow investment profitability only in the presence of a dedicated subsidy framework such as the one available in the Italian energy market. In particular, the LCE of the proposed system is around 140 Eur/MWh (with the option to discharge the cogenerated heat) and the IRR is around 15%, based on the Italian electricity subsidy tariffs. The recovery of otherwise discharged heat to match thermal energy demand can significantly increase the investment profitability and compensate the high investment costs of the proposed technology

    CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants

    No full text
    A latent heat storage system for concentrated solar plants (CSP) is numerically examined by means of CFD simulations. This study aims at identifying the convective flows produced within the melted phase by temperature gradients and gravity. Simulations were carried out on experimental devices for applications to high temperature concentrated solar power plants. A shell-and-tube geometry composed by a vertical cylindrical tank, filled by a Phase Change Material (PCM) and an inner steel tube, in which the heat transfer fluid (HTF) flows, from the top to the bottom, is considered. The conjugate heat transfer process is examined by solving the unsteady Navier–Stokes equations for HTF and PCM and conduction for the tube. In order to take into account the buoyancy effects in the PCM tank the Boussinesq approximation is adopted. The results show that the enhanced heat flux, due to natural convective flow, reduce of about 30% the time needed to charge the heat storage. A detailed description of the convective motion in the melted phase and the heat flux distribution between the HTF and PCM are reported. The effect of the mushy zone constant is also investigated
    corecore