10 research outputs found

    CryoEM structures of the SARS-CoV-2 spike bound to antivirals

    Get PDF
    (Póster 63) Background: Single-particle cryoelectron microscopy (cryoEM) has played a key role in the fight against COVID-19. The molecular mechanisms for the action of some of the currently approved drugs targeting the SARS-CoV-2 RNA-dependent RNA polymerase, the fast developments of the current available vaccines and antibody therapies are examples of the impact of the knowledge gained from the cryoEM structures of SARS-CoV-2 proteins in complex with proteins (ACE2 or antibodies/nanobodies) or small compounds. Our aim is to use this technology to understand structurally how certain antiviral compounds and proteins targeting the spike may inhibit viral entry. Methods: 1) Production of wild-type and mutated spike and ACE2 proteins using baculovirus/insect cells. 2) Spike binding kinetics: protein-protein and protein-small compound interactions measured by BLI Biolayer interferometry (BLI) and/or microscale Thermophoresis (MST). 3) Buffer optimization for cryoEM grid preparation of spike variants by thermal shift assays and negative-staining electron microscopy (NSEM). These techniques are also used to adjust the molar ratio of spike:ACE2 and spike:small-compound complexes. 4) Structural characterization by cryoEM. Results: At IBV-CSIC we have created a pipeline for the production and characterization of several spike variants and ACE2 decoys. While this pipeline is described in detail in other oral/poster communications, this communication is centered around one of the pillars within this pipeline; the structural characterization of possible drug candidates bound to the SARS-CoV-2 spike by cryoEM. In this way, we have successfully solved structures of the spike bound to: A) protein inhibitors as ACE2 decoys; B) a small inhibitory compound; C) mixtures of proteins and small-compound (nanobody-heparan derivative) working cooperatively as inhibitors. These protein/drug candidates were previously selected based on the results obtained in our interactomics platform, whereas their concentration and the buffer conditions for cryoEM grids preparation were established based on thermal shift assays and NSEM. Conclusion: CryoEM is a powerful tool to directly visualize the effect caused by a potential drug on a protein target. In a short period of time we have developed this technique in our institute to be applied to the SARS-CoV-2 spike protein, not only to obtain high-resolution structures of SARS- CoV-2 spike variants of concern (see WP4) but also to obtain the structures of complexes of the spike with various inhibitory compounds of very different nature

    Use of an interactomics pipeline to assess the potential of new antivirals against SARS-CoV-2

    Get PDF
    (Póster 80) Background: In late 2019 SARS-CoV-2 infection appeared in China, becoming a pandemic in 2020. The scientific community reacted rapidly, characterizing the viral genome and its encoded proteins, aiming at interfering with viral spreading with vaccines and antivirals. The receptor binding domain (RBD) of the viral spike (S) protein plays a key role in cell entry of the virus. It interacts with the cellular receptor for SARS-CoV-2, the membrane-bound human Angiotensin Converting Ectoenzyme 2 (ACE2). With the goal of monitoring interference with this interaction by potential antiviral drugs, we have set up at the Institute for Biomedicine of Valencia (IBV-CSIC) an interactomics pipeline targeting the initial step of viral entry. Methods: For the production part of the pipeline (pure RBD/Spike variants and soluble ACE2), see parallel poster. These proteins allowed monitoring of the RBD/Spike-ACE2 interaction in presence or absence of potential inhibitors. Thermal shift assays (thermofluor) were used for initial detection of compound binding at different ligand/protein ratios and media conditions (pH, buffers, chaotropic agents). Next, binding affinity and on/off kinetics were characterized using Biolayer interferometry (BLI), Surface plasmon resonance (SPR), Microscale Thermophoresis (MST) and/or Isothermal titration calorimetry (ITC). For protein-protein interactions, we mostly used BLI or SPR, whereas for proteinsmall compound analysis MST was generally best. Protein aggregation-dissociation was monitored by size exclusion chromatography with multiangle light scattering (SEC-MALS). Results: Candidates proven by thermal shift assays to bind to RBD/spike protein without affecting the integrity of these proteins were subjected to quantitative affinity measurements. We successfully demonstrated that BLI, SPR and MST can be used to follow the interactions between SARS-CoV- 2 proteins and the putative drug candidates, as well as to monitor the interference with Spike-Ace2 binding of potential drug candidates. While BLI and SPR displayed reproducible results in the measurement of protein-protein interaction (applied to soluble ACE2 used as a decoy), they were less suitable for measuring the binding of small molecules. The fact that most small compounds were only soluble in organic solvents made difficult to obtain a low signal/noise while using BLI, necessary for the assessment of the binding. We overcame that problem by using MST. After dilution of the compounds to the final experimental concentrations, the technique could detect a significant binding signal enough to calculate binding parameters. MST also allowed to measure the degree of interference that each compound was having on RBD/Spike-ACE2 interaction. The pipeline has been customized and validated with compounds of very different nature provided by different groups belonging to the PTI and other external laboratories, as well as with different Ace2 decoys designed at the IBV. Conclusions: The interactomics platform at the IBV has been used to successfully develop two different antiviral approaches in order to fight COVID-19. It has allowed technical specialization of the staff as well as the development, in a very short period of time, of two ambitious projects. We have demonstrated that we can perform interactomic characterization for challenging projects as well as provide information about binding of antivirals to potential new SARS-CoV-2 variants of concern

    Un ataque combinado químico, virológico, biofísico y estructural hace posible la obtención de nuevos inhibidores de entrada celular de SARS-CoV-2 y la caracterización de su mecanismo de inhibición

    Get PDF
    Resumen del trabajo presentado al 45º Congreso de la Sociedad Española de Bioquímica y Biología Molecular (SEBBM), celebrado en Zaragoza del 5 al 8 de septiembre de 2023.IBV-COVID19 Pipeline: C.Espinosa, N.Gougeard, M.P.Hernández-Sierra, A.Rubio-del-Campo, R.Ruiz-Partida, L.Villamayor.El virus SARS-CoV-2 causa el COVID-19 al infectar las células a través de la interacción de la proteína de su espícula (S) con el receptor celular enzima convertidora de angiotensina 2 (ACE2). Para buscar inhibidores de este paso clave en la infección viral, examinamos una biblioteca interna (IQM-CSIC, Madrid) de compuestos multivalentes derivados de triptófano, primero usando pseudopartículas de Virus de Estomatits Vesicular que expresaban S (I2SysBio, UV y CSIC, Valencia), identificando un compuesto como potente inhibidor de entrada no citotóxico. La optimización química (IQM-CSIC) generó otros dos potentes inhibidores de entrada no citotóxicos que, como 2, también inhibieron la entrada celular de SARS-CoV-2 genuino (I2SysBio). Los estudios con proteínas recombinantes puras (IBV-CSIC, Valencia) usando termofluor y termoforesis de microescala revelaron la unión de estos compuestos a S, y a su dominio de unión al receptor producido separadamente, probando interferencia con la interacción con ACE2. La criomicroscopía electrónica de S (IBV-CSIC), libre o unido al compuesto activo, arrojó luz sobre los mecanismos de inhibición por estos compuestos de la entrada viral a la célula. Esta actividad triinstitucional combinada ha identificado y caracterizado una nueva clase de inhibidores de entrada de SARS-CoV-2 de claro potencial preventivo o terapéutico de COVID-19.ECNextGeneration EUfund 2020/2094 de CSIC/PTI Salud Global; Crue/CSIC/Santander Fondo Supera Covid-19;CSIC-COV19-082; CIBERER-ISCIIICOV20/00437; Covid19-SCI/GValenciana (RG);PID2020- 120322RB-C21 (VR) y PID2020-116880GB-I00 (JLLl) Agenc. Estat Investig.Peer reviewe

    C-2 Thiophenyl Tryptophan Trimers Inhibit Cellular Entry of SARS-CoV-2 through Interaction with the Viral Spike (S) Protein

    Get PDF
    26 páginas, 6 figuras, 2 tablas.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, by infecting cells via the interaction of its spike protein (S) with the primary cell receptor angiotensin-converting enzyme (ACE2). To search for inhibitors of this key step in viral infection, we screened an in-house library of multivalent tryptophan derivatives. Using VSV-S pseudoparticles, we identified compound 2 as a potent entry inhibitor lacking cellular toxicity. Chemical optimization of 2 rendered compounds 63 and 65, which also potently inhibited genuine SARS-CoV-2 cell entry. Thermofluor and microscale thermophoresis studies revealed their binding to S and to its isolated receptor binding domain (RBD), interfering with the interaction with ACE2. High-resolution cryoelectron microscopy structure of S, free or bound to 2, shed light on cell entry inhibition mechanisms by these compounds. Overall, this work identifies and characterizes a new class of SARS-CoV-2 entry inhibitors with clear potential for preventing and/or fighting COVID-19.Funding for this project was provided by grants from the European Commission NextGenerationEU fund (EU 2020/2094), through CSIC’s Global Health Platform (PTI Salud Global), Crue-CSIC-Santander Fondo Supera Covid-19, and CSIC grant (CSIC-COV19-082) to R.G., M.-J-P.-P., V.R., J.B., A.M., and J.-L.L. and CIBERER, Instituto de Salud Carlos III (COV20/00437) to V.R., J.B., A.M., and J.-L.L. In addition, this work was funded by grant (Covid_19-SCI) from the Generalitat Valenciana y Conselleria de Innovación, Universidades, Ciencia y Sociedad digital to R.G., and by grants PID2020-120322RB-C21 and PID2020-116880GB-I00 from the Agencia Estatal de Investigación of the Spanish Government to V.R. and J.-L.L., respectively.Peer reviewe

    New findings with the IBV decoy for cell entry inhibition of SARS-CoV-2, and unique structural data for soluble dimeric ACE2 bound to the viral S trimer

    Get PDF
    Resumen del trabajo presentado a las III Jornadas Científicas PTI+ Salud Global, celebradas en el Centro de Ciencias Humanas y Sociales (CCHS), CSIC (Madrid) del 20 al 22 de noviembre de 2023.[Background] The SARS-CoV-2 spike protein (S) mediates the interaction of the virus with cellular membrane receptor (angiotensin-converting enzyme 2, ACE2). In previous PTI meetings, we reported heterologous production in vitro of the ACE2 extracellular domains modified by site-directed mutagenesis to increase its affinity for the S protein, to enable it to be used as viral entry inhibitor (decoy) by competing with the membrane-bound cellular receptor. We now test the value of these decoys for: 1) binding to S variants that emerged during the evolution of the pandemic in viral lineages of concern; and 2) inhibiting experimental cellular infection by pseudotyped virus expressing these S variants. Cellular syncytia formation has been described in several organs as a manifestation of severe COVID-19, and likely has pathogenic impact. To test further our decoys’ effectiveness, we studied their impact on cellular syncytia formation within an experimental in vitro cell culture model. Searching for effective decoys, we produced monomeric and dimeric ACE2 proteins, depending on the respective absence/presence of the extracellular collectrin domain. Interestingly, there are no reported structures of dimeric soluble ACE2 bound to the S protein. After extensive knowledge-guided trial-and-error, we succeeded in visualizing by cryo-electron microscopy (cryoEM) this interaction (~7-Å-resolution), and in understanding the challenges inherent in determining such a complex structural organization.[Methods] 1) Recombinant production and purification of the monomeric or dimeric ACE2, their decoys the receptor binding domain (RBD) and the S protein variants of interest. We used baculovirus/insect cells to produce ACE2s and RBDs, and human Expi293F cells for the S proteins. 2) Biolayer interferometry for assessing protein-protein interactions; 3) Use of a model system for monitoring viral cellular infection and its inhibition by decoys. We used a pseudotyped engineered vesicular stomatitis virus expressing and exposing at its surface the desired S protein variant, to infect appropriate SARS-CoV-2-susceptible mammalian cells; 4) Single-particle cryoEM; 5) Syncytia formation testing using an engineered cultured cell system in which heterologous surface expression of the S protein in one cell type induces syncytium formation in other cells expressing membrane-bound ACE2.[Results] Our decoys proved highly effective in preventing cellular infection by pseudotyped virus expressing the S proteins of different SARS-CoV-2 variants of concern. Biophysical results have validated the maintained interaction between the decoy and the various S protein variants. When introduced into the cellular model system for syncytia formation, the decoys proved capable of decreasing such formation. Puzzlingly, the monomeric decoy was more effective than the dimeric one. The cryoEM images unveiled an ACE2 dimer configuration, where the subunits, resembling the previously reported monomer, were oriented at an angle of >60º, in which the vortex was the interlinked collectrin domains. Both catalytic domains engage with a single RBD of one subunit from different S trimers. The formation of a network at high stoichiometries of both components poses a challenge for structure determination by cryoEM.[Conclusions] Unlike therapeutic antibodies, which proved ineffective on variants not initially used for their production, our decoys should be effective in preventing infection by all widely widespread SARS-CoV-2 variants.Peer reviewe

    C‑2 Thiophenyl Tryptophan Trimers Inhibit Cellular Entry of SARS-CoV‑2 through Interaction with the Viral Spike (S) Protein

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, by infecting cells via the interaction of its spike protein (S) with the primary cell receptor angiotensin-converting enzyme (ACE2). To search for inhibitors of this key step in viral infection, we screened an in-house library of multivalent tryptophan derivatives. Using VSV-S pseudoparticles, we identified compound 2 as a potent entry inhibitor lacking cellular toxicity. Chemical optimization of 2 rendered compounds 63 and 65, which also potently inhibited genuine SARS-CoV-2 cell entry. Thermofluor and microscale thermophoresis studies revealed their binding to S and to its isolated receptor binding domain (RBD), interfering with the interaction with ACE2. High-resolution cryoelectron microscopy structure of S, free or bound to 2, shed light on cell entry inhibition mechanisms by these compounds. Overall, this work identifies and characterizes a new class of SARS-CoV-2 entry inhibitors with clear potential for preventing and/or fighting COVID-19

    C‑2 Thiophenyl Tryptophan Trimers Inhibit Cellular Entry of SARS-CoV‑2 through Interaction with the Viral Spike (S) Protein

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, by infecting cells via the interaction of its spike protein (S) with the primary cell receptor angiotensin-converting enzyme (ACE2). To search for inhibitors of this key step in viral infection, we screened an in-house library of multivalent tryptophan derivatives. Using VSV-S pseudoparticles, we identified compound 2 as a potent entry inhibitor lacking cellular toxicity. Chemical optimization of 2 rendered compounds 63 and 65, which also potently inhibited genuine SARS-CoV-2 cell entry. Thermofluor and microscale thermophoresis studies revealed their binding to S and to its isolated receptor binding domain (RBD), interfering with the interaction with ACE2. High-resolution cryoelectron microscopy structure of S, free or bound to 2, shed light on cell entry inhibition mechanisms by these compounds. Overall, this work identifies and characterizes a new class of SARS-CoV-2 entry inhibitors with clear potential for preventing and/or fighting COVID-19
    corecore