10 research outputs found

    Conception d’un adaptateur molĂ©culaire pour l’immobilisation de facteurs de croissance sur un substrat de collagĂšne

    Get PDF
    RÉSUMÉ Les biomatĂ©riaux Ă  base de collagĂšne ont une place particuliĂšrement importante dans le domaine de l’ingĂ©nierie tissulaire. Leur fonctionnalisation peut ĂȘtre facilement effectuĂ©e Ă  l’aide de protĂ©ines chimĂšres constituĂ©e d’une biomolĂ©cule, typiquement un facteur de croissance, fusionnĂ©e Ă  un domaine de liaison au collagĂšne. Cette fonctionnalisation peut confĂ©rer aux biomatĂ©riaux des propriĂ©tĂ©s mitogĂ©niques et anti-apoptotiques, et influencer la colonisation de ce dernier par des cellules. De nombreuses Ă©tudes ont Ă©tĂ© menĂ©es en ce sens dans des domaines variĂ©s de la mĂ©decine rĂ©gĂ©nĂ©ratrice, comme la cicatrisation ou la rĂ©gĂ©nĂ©ration osseuse. Nous avons choisi d’immobiliser des facteurs de croissance Ă©tiquetĂ©s avec une hĂ©lice alpha (Ecoil-GF) sur un substrat de gĂ©latine en utilisant un adaptateur molĂ©culaire constituĂ© du domaine de liaison au collagĂšne de la fibronectine, Ă©tiquetĂ© avec l’hĂ©lice alpha partenaire (CBD-Kcoil). Les hĂ©lices alpha Ecoil et Kcoil interagissent par interaction superhĂ©lice d’une maniĂšre spĂ©cifique avec une forte affinitĂ©, ce qui permet la formation d’un complexe entre la gĂ©latine, l’adaptateur molĂ©culaire CBD-Kcoil et le facteur de croissance Ecoil-GF. Nous avons produit et purifiĂ© le facteur de croissance des fibroblastes basique Ă©tiquetĂ© avec l’hĂ©lice Ecoil (Ecoil-bFGF), et nous avons comparĂ© son immobilisation avec celle du facteur de croissance Ă©pidermique, en utilisant l’adaptateur molĂ©culaire CBD-Kcoil.----------ABSTRACT Collagen-based biomaterials have attracted a lot of interest in the field of tissue engineering. Their functionalization can be easily performed using chimeric proteins composed of a biomolecule, typically a growth factor, that is fused to a collagen-binding domain. This functionalization may provide biomaterials with mitogenic and anti-apoptotic properties, and influence the cellular fate within the implant. Many studies have been conducted to this end, in various fields of regenerative medicine, such as wound healing and bone regeneration. We chose to tether coil-tagged growth factors (Ecoil-GF) on a gelatin substrate using a molecular adaptor consisting of the collagen-binding domain of fibronectin, fused to the complementary coil (CBD-Kcoil). E and K coils interacted through coiled-coil interaction in a specific manner with high affinity, which enabled the formation of a ternary complex between the gelatin substrate, the molecular adapter CBD-Kcoil and the growth factor Ecoil-GF. We have produced and purified an Ecoil-tagged basic fibroblast growth factor (Ecoil-bFGF), and we have compared its tethering with that of the epidermal growth factor, using the molecular adaptor CBD-Kcoil

    ALIX / Syntenin / Syndecan-4 : an ESCRT-to-membrane coupling required for completion of cytokinesis

    No full text
    La cytocinĂšse est l’étape finale de sĂ©paration des deux cellules filles, aprĂšs la mitose. Elle commence avec la formation d’un sillon de clivage, gĂ©nĂ©rĂ© par un anneau d’actomyosine, menant Ă  la formation d’un pont intercellulaire dont le centre est dĂ©nommĂ© « midbody ». Les mĂ©canismes qui mĂšnent Ă  l’abscission sont encore largement incompris, mais le modĂšle actuellement retenu fait intervenir la polymĂ©risation de filaments d’ESCRT-III. Ces protĂ©ines sont en particulier localisĂ©es au niveau des sites d’abscission et sont nĂ©cessaires Ă  la coupure du pont intercellulaire. On ne sait pas si ces protĂ©ines ESCRT-III interagissent avec une protĂ©ine membranaire dans le cadre de la cytocinĂšse, comme c’est le cas dans d’autres Ă©vĂ©nements topologiquement Ă©quivalents oĂč les ESCRT-III sont impliquĂ©es, comme par exemple le bourgeonnement du VIH ou la formation des exosomes. Dans ce dernier cas, SyntĂ©nine est connue pour agir comme un adaptateur entre les protĂ©ines transmembranaires SyndĂ©cans et les protĂ©ines ALIX/ESCRT-III, ce qui est nĂ©cessaire pour la scission des exosomes Ă  l’intĂ©rieur des corps multivĂ©siculaires. Avant mon arrivĂ©e, le laboratoire TMDC a purifiĂ© et analysĂ© par spectromĂ©trie de masse des « midbody remnants » de cellules HeLa, une structure rĂ©siduelle gĂ©nĂ©rĂ©e aprĂšs l’abscission. Cette analyse a mis en Ă©vidence l’enrichissement d’environ 500 protĂ©ines dans ces « midbody remnants », dont une grande partie n’avaient jamais Ă©tĂ© dĂ©crites comme requises pour la cytocinĂšse, en particulier SyntĂ©nine et SyndĂ©can-4. L’objectif de ma thĂšse a Ă©tĂ© de dĂ©terminer le rĂŽle du couple SyntĂ©nine/SyndĂ©can-4 dans les derniĂšres Ă©tapes de la cytocinĂšse, d’autant plus qu’aucune protĂ©ine transmembranaire n’a pour le moment Ă©tĂ© Ă©tudiĂ©e dans le cadre de l’abscission. Des expĂ©riences d’immunofluorescence sur des ponts intercellulaires de cellules HeLa ont montrĂ© que les protĂ©ines endogĂšnes SyndĂ©can-4, SyntĂ©nine, ALIX et CHMP4B (une protĂ©ine du complexe ESCRT-III) colocalisent au niveau du midbody et sur son cĂŽtĂ©, au site d’abscission. En vidĂ©omicroscopie, mScarlet-SyntĂ©nine et GFP-SyndĂ©can-4 sont d’abord recrutĂ©es au midbody, puis dans un deuxiĂšme temps, sont enrichies au site d’abscission, comme ce qui a dĂ©jĂ  Ă©tĂ© montrĂ© pour les protĂ©ines ESCRT-III. Au niveau mĂ©canistique, ALIX est nĂ©cessaire au recrutement de SyntĂ©nine au pont intercellulaire, et SyntĂ©nine est elle-mĂȘme nĂ©cessaire au bon recrutement de SyndĂ©can-4. D’un point de vue fonctionnel, la dĂ©plĂ©tion d’ALIX, de SyntĂ©nine ou de SyndĂ©can-4 retarde fortement l’abscission et empĂȘche le recrutement stable des protĂ©ines ESCRT-III au site d’abscission. L’ensemble de ces rĂ©sultats montre qu’ALIX, SyntĂ©nine et SyndĂ©can-4 interagissent dans le cadre de la cytocinĂšse et qu’ils permettent la bonne localisation des protĂ©ines ESCRT-III au niveau du site d’abscission. Syndecan-4 est la premiĂšre protĂ©ine transmembranaire directement impliquĂ©e dans l’abscission ; je propose que cette protĂ©ine couple les forces gĂ©nĂ©rĂ©es par les filaments d’ALIX/ESCRT-III et la membrane, ce qui permet la scission effective du pont intercellulaire.Cytokinesis is the final step that mediates the separation of the two daughter cells after mitosis. It begins with the formation of a cleavage furrow, generated by an actomyosin ring, which leads to the formation of an intercellular bridge whose center is called the "midbody". The mechanisms that lead to abscission are not fully understood, but the commonly accepted model involves the polymerization of ESCRT-III filaments. In particular, these proteins are localized at the abscission sites and are required for the severing the intercellular bridge. It is not known whether these ESCRT-III proteins interact with a membrane protein in the context of cytokinesis, as it has been shown in other topologically equivalent events in which ESCRT-III are involved, such as HIV budding or biogenesis of exosomes. In the latter case, Syntenin is known to act as an adapter between the transmembrane proteins Syndecans and the ALIX / ESCRT-III proteins, and this is required for the proper release of exosomes within the multivesicular bodies. Before my arrival, the laboratory had purified and analyzed by mass spectrometry "midbody remnants" of HeLa cells, a midbody released after abscission. This analysis revealed the enrichment of approximately 500 proteins in the "midbody remnants", a large part of which had never been shown to be required for cytokinesis, in particular Syntenin and Syndecan-4. The aim of my thesis was to determine the role of the Syntenin / Syndecan-4 couple in the last stages of cytokinesis, especially because no transmembrane protein has yet been studied in the context of cytokinetic abscission. Immunofluorescence experiments on intercellular bridges of HeLa cells showed that the endogenous proteins Syndecan-4, Syntenin, ALIX and CHMP4B (a protein of the ESCRT-III complex) colocalize at the midbody and on its side, at the site of abscission. In videomicroscopy, mScarlet-Syntenin and GFP-Syndecan-4 are first recruited to the midbody, and then, in a second step, are enriched at the abscission site, as it has already been shown for ESCRT-III proteins. From a mechanistic point of view, ALIX is required for the recruitment of Syntenin at the intercellular bridge, and Syntenin is itself required for the proper recruitment of Syndecan-4. From a functional point of view, the depletion of ALIX, Syntenin or Syndecan-4 strongly delays abscission and prevents the stable recruitment of ESCRT-III proteins at the abscission site. All these results show that ALIX, Syntenin and Syndecan-4 interact together in the context of cytokinesis and that they allow the proper localization of ESCRT-III proteins at the abscission site. Syndecan-4 is the first transmembrane protein directly involved in abscission; I propose that this protein couples the forces generated by the ALIX / ESCRT-III filaments to the plasma membrane, and therefore promotes the scission of the intercellular bridge

    ALIX / Syntenin / Syndecan-4 : un couplage entre la machinerie ESCRT et la membrane plasmique requis pour la cytocinĂšse

    No full text
    Cytokinesis is the final step that mediates the separation of the two daughter cells after mitosis. It begins with the formation of a cleavage furrow, generated by an actomyosin ring, which leads to the formation of an intercellular bridge whose center is called the "midbody". The mechanisms that lead to abscission are not fully understood, but the commonly accepted model involves the polymerization of ESCRT-III filaments. In particular, these proteins are localized at the abscission sites and are required for the severing the intercellular bridge. It is not known whether these ESCRT-III proteins interact with a membrane protein in the context of cytokinesis, as it has been shown in other topologically equivalent events in which ESCRT-III are involved, such as HIV budding or biogenesis of exosomes. In the latter case, Syntenin is known to act as an adapter between the transmembrane proteins Syndecans and the ALIX / ESCRT-III proteins, and this is required for the proper release of exosomes within the multivesicular bodies. Before my arrival, the laboratory had purified and analyzed by mass spectrometry "midbody remnants" of HeLa cells, a midbody released after abscission. This analysis revealed the enrichment of approximately 500 proteins in the "midbody remnants", a large part of which had never been shown to be required for cytokinesis, in particular Syntenin and Syndecan-4. The aim of my thesis was to determine the role of the Syntenin / Syndecan-4 couple in the last stages of cytokinesis, especially because no transmembrane protein has yet been studied in the context of cytokinetic abscission. Immunofluorescence experiments on intercellular bridges of HeLa cells showed that the endogenous proteins Syndecan-4, Syntenin, ALIX and CHMP4B (a protein of the ESCRT-III complex) colocalize at the midbody and on its side, at the site of abscission. In videomicroscopy, mScarlet-Syntenin and GFP-Syndecan-4 are first recruited to the midbody, and then, in a second step, are enriched at the abscission site, as it has already been shown for ESCRT-III proteins. From a mechanistic point of view, ALIX is required for the recruitment of Syntenin at the intercellular bridge, and Syntenin is itself required for the proper recruitment of Syndecan-4. From a functional point of view, the depletion of ALIX, Syntenin or Syndecan-4 strongly delays abscission and prevents the stable recruitment of ESCRT-III proteins at the abscission site. All these results show that ALIX, Syntenin and Syndecan-4 interact together in the context of cytokinesis and that they allow the proper localization of ESCRT-III proteins at the abscission site. Syndecan-4 is the first transmembrane protein directly involved in abscission; I propose that this protein couples the forces generated by the ALIX / ESCRT-III filaments to the plasma membrane, and therefore promotes the scission of the intercellular bridge.La cytocinĂšse est l’étape finale de sĂ©paration des deux cellules filles, aprĂšs la mitose. Elle commence avec la formation d’un sillon de clivage, gĂ©nĂ©rĂ© par un anneau d’actomyosine, menant Ă  la formation d’un pont intercellulaire dont le centre est dĂ©nommĂ© « midbody ». Les mĂ©canismes qui mĂšnent Ă  l’abscission sont encore largement incompris, mais le modĂšle actuellement retenu fait intervenir la polymĂ©risation de filaments d’ESCRT-III. Ces protĂ©ines sont en particulier localisĂ©es au niveau des sites d’abscission et sont nĂ©cessaires Ă  la coupure du pont intercellulaire. On ne sait pas si ces protĂ©ines ESCRT-III interagissent avec une protĂ©ine membranaire dans le cadre de la cytocinĂšse, comme c’est le cas dans d’autres Ă©vĂ©nements topologiquement Ă©quivalents oĂč les ESCRT-III sont impliquĂ©es, comme par exemple le bourgeonnement du VIH ou la formation des exosomes. Dans ce dernier cas, SyntĂ©nine est connue pour agir comme un adaptateur entre les protĂ©ines transmembranaires SyndĂ©cans et les protĂ©ines ALIX/ESCRT-III, ce qui est nĂ©cessaire pour la scission des exosomes Ă  l’intĂ©rieur des corps multivĂ©siculaires. Avant mon arrivĂ©e, le laboratoire TMDC a purifiĂ© et analysĂ© par spectromĂ©trie de masse des « midbody remnants » de cellules HeLa, une structure rĂ©siduelle gĂ©nĂ©rĂ©e aprĂšs l’abscission. Cette analyse a mis en Ă©vidence l’enrichissement d’environ 500 protĂ©ines dans ces « midbody remnants », dont une grande partie n’avaient jamais Ă©tĂ© dĂ©crites comme requises pour la cytocinĂšse, en particulier SyntĂ©nine et SyndĂ©can-4. L’objectif de ma thĂšse a Ă©tĂ© de dĂ©terminer le rĂŽle du couple SyntĂ©nine/SyndĂ©can-4 dans les derniĂšres Ă©tapes de la cytocinĂšse, d’autant plus qu’aucune protĂ©ine transmembranaire n’a pour le moment Ă©tĂ© Ă©tudiĂ©e dans le cadre de l’abscission. Des expĂ©riences d’immunofluorescence sur des ponts intercellulaires de cellules HeLa ont montrĂ© que les protĂ©ines endogĂšnes SyndĂ©can-4, SyntĂ©nine, ALIX et CHMP4B (une protĂ©ine du complexe ESCRT-III) colocalisent au niveau du midbody et sur son cĂŽtĂ©, au site d’abscission. En vidĂ©omicroscopie, mScarlet-SyntĂ©nine et GFP-SyndĂ©can-4 sont d’abord recrutĂ©es au midbody, puis dans un deuxiĂšme temps, sont enrichies au site d’abscission, comme ce qui a dĂ©jĂ  Ă©tĂ© montrĂ© pour les protĂ©ines ESCRT-III. Au niveau mĂ©canistique, ALIX est nĂ©cessaire au recrutement de SyntĂ©nine au pont intercellulaire, et SyntĂ©nine est elle-mĂȘme nĂ©cessaire au bon recrutement de SyndĂ©can-4. D’un point de vue fonctionnel, la dĂ©plĂ©tion d’ALIX, de SyntĂ©nine ou de SyndĂ©can-4 retarde fortement l’abscission et empĂȘche le recrutement stable des protĂ©ines ESCRT-III au site d’abscission. L’ensemble de ces rĂ©sultats montre qu’ALIX, SyntĂ©nine et SyndĂ©can-4 interagissent dans le cadre de la cytocinĂšse et qu’ils permettent la bonne localisation des protĂ©ines ESCRT-III au niveau du site d’abscission. Syndecan-4 est la premiĂšre protĂ©ine transmembranaire directement impliquĂ©e dans l’abscission ; je propose que cette protĂ©ine couple les forces gĂ©nĂ©rĂ©es par les filaments d’ALIX/ESCRT-III et la membrane, ce qui permet la scission effective du pont intercellulaire

    Cell Biology: Alix ESCRTs Pavarotti During Cell Division

    No full text
    International audienceCytokinesis leads to the physical separation of the daughter cells and requires the constriction of ESCRT filaments. How the ESCRT machinery is recruited in non-vertebrate organisms was puzzling, and is now shown to rely on a direct interaction between the ESCRT-associated protein ALIX and the kinesin motor Pavarotti in Drosophila

    Actin, microtubule, septin and ESCRT filament remodeling during late steps of cytokinesis

    Get PDF
    International audienc

    Fluorogenic Protein Probes with Red or Near-Infrared Emission for Genetically Targeted Live-Cell Imaging

    No full text
    A series of red-emitting and near-infrared fluorogenic protein probes based on push-pull molecular rotor structures was developed. After characterization of their optical properties using Bovine Serum Albumin as a model protein, they were conjugated to a halogenoalkane ligand in order to target the protein self-labeling tag HaloTag. The interaction with HaloTag was investigated in vitro and then the most promising probes were applied to live-cell imaging in wash-free conditions using fluorogenic and chemogenetic targeting of HaloTag fusion proteins.<br /

    The Flemmingsome reveals an ESCRT-to-membrane coupling via ALIX/syntenin/syndecan-4 required for completion of cytokinesis

    No full text
    International audienceCytokinesis requires the constriction of ESCRT-III filaments on the side of the midbody, where abscission occurs. After ESCRT recruitment at the midbody, it is not known how the ESCRT-III machinery localizes to the abscission site. To reveal actors involved in abscission, we obtained the proteome of intact, post-abscission midbodies (Flemmingsome) and identified 489 proteins enriched in this organelle. Among these proteins, we further characterized a plasma membrane-to-ESCRT module composed of the transmembrane proteoglycan syndecan-4, ALIX and syntenin, a protein that bridges ESCRT-III/ALIX to syndecans. The three proteins are highly recruited first at the midbody then at the abscission site, and their depletion delays abscission. Mechanistically, direct interactions between ALIX, syntenin and syndecan-4 are essential for proper enrichment of the ESCRT-III machinery at the abscission site, but not at the midbody. We propose that the ESCRT-III machinery must be physically coupled to a membrane protein at the cytokinetic abscission site for efficient scission, uncovering common requirements in cytokinesis, exosome formation and HIV budding
    corecore