89 research outputs found

    Serum lipid profile among sporadic and familial forms of Parkinson’s disease

    Get PDF
    Brain cholesterol metabolism has been described as altered in Parkinson’s disease (PD) patients. Serum lipid levels have been widely studied in PD with controversial results among different populations and age groups. The present study is aimed at determining if the serum lipid profile could be influenced by the genetic background of PD patients. We included 403 PD patients (342 sporadic PD patients, 30 GBA-associated PD patients, and 31 LRRK2-associated PD patients) and 654 healthy controls (HCs). Total cholesterol, HDL, LDL, and triglycerides were measured in peripheral blood. Analysis of covariance adjusting for sex and age (ANCOVA) and post hoc tests were applied to determine the differences within lipid profiles among the groups. Multivariate ANCOVA revealed significant differences among the groups within cholesterol and LDL levels. GBA-associated PD patients had significantly lower levels of total cholesterol and LDL compared to LRRK2-associated PD patients and HCs. The different serum cholesterol levels in GBA-associated PD might be related to diverse pathogenic mechanisms. Our results support the hypothesis of lipid metabolism disruption as one of the main PD pathogenic mechanisms in patients with GBA-associated PD. Further studies would be necessary to explore their clinical implications.This work was supported by the Spanish Ministry of Science and Innovation [RTC2019-007150-1], the Instituto de Salud Carlos III-Fondo Europeo de Desarrollo Regional (ISCIII-FEDER) [PI14/01823, PI16/01575, PI18/01898, PI19/01576], the Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía [CVI-02526, CTS-7685], the Consejería de Salud y Bienestar Social de la Junta de Andalucía [PI-0471-2013, PE-0210-2018, PI-0459-2018, PE-0186-2019], and the Fundación Alicia Koplowitz. Pilar Gómez-Garre was supported by the “Nicolás Monardes” program [C-0048-2017] (from Andalusian Regional Ministry of Health). Silvia Jesús was supported by the “Acción B Clínicos Investigadores” program from the Consejería de Salud y Familias de la Junta de Andalucía [B-0007-2019]. Daniel Macías-García was supported by the “Río Hortega” program [CM18/00142] from the Instituto de Salud Carlos III (ISCIII-FEDER). María Teresa Periñán was supported by the Spanish Ministry of Education, Culture and Sports [FPU16/05061]. Miguel Ángel Labrador-Espinosa is supported by University of Seville [USE-18817-A].Peer reviewe

    Levodopa-Induced Dyskinesia in Parkinson Disease Specifically Associates with Dopaminergic Depletion in Sensorimotor-Related Functional Subregions of the Striatum

    Get PDF
    [Purpose] To determine whether the development of levodopa-induced dyskinesia (LID) in Parkinson disease (PD) specifically relates to dopaminergic depletion in sensorimotor-related subregions of the striatum.[Methods] Our primary study sample consisted of 185 locally recruited PD patients, of which 73 (40%) developed LID. Retrospective 123I-FP-CIT SPECT data were used to quantify the specific dopamine transporter (DAT) binding ratio within distinct functionally defined striatal subregions related to limbic, executive, and sensorimotor systems. Regional DAT levels were contrasted between patients who developed LID (PD + LID) and those who did not (PD-LID) using analysis of covariance models controlled for demographic and clinical features. For validation of the findings and assessment of the evolution of LID-associated DAT changes from an early disease stage, we also studied serial 123I-FP-CIT SPECT data from 343 de novo PD patients enrolled in the Parkinson Progression Marker’s Initiative using mixed linear model analysis.[Results] Compared with PD-LID, DAT level reductions in PD + LID patients were most pronounced in the sensorimotor striatal subregion (F = 5.99, P = 0.016) and also significant in the executive-related subregion (F = 5.30, P = 0.023). In the Parkinson Progression Marker’s Initiative cohort, DAT levels in PD + LID (n = 161, 47%) were only significantly reduced compared with PD-LID in the sensorimotor striatal subregion (t = −2.05, P = 0.041), and this difference was already present at baseline and remained largely constant over time.[Conclusion] Measuring DAT depletion in functionally defined sensorimotor-related striatal regions of interest may provide a more sensitive tool to detect LID-associated dopaminergic changes at an early disease stage and could improve individual prognosis of this common clinical complication in PD.Peer reviewe

    Responsiveness of the Scale for the Assessment and Rating of Ataxia and Natural History in 884 Recessive and Early Onset Ataxia Patients

    Get PDF
    The Scale for the Assessment and Rating of Ataxia (SARA) is the most widely applied clinical outcome assessment (COA) for genetic ataxias, but presents metrological and regulatory challenges. To facilitate trial planning, we characterize its responsiveness (including subitem-level relations to ataxia severity and patient-focused outcomes) across a large number of ataxias, and provide first natural history data for several of them.Subitem-level correlation- and distribution-based analysis of 1637 SARA assessments in 884 patients with autosomal-recessive/early-onset ataxia (370 with 2-8 longitudinal assessments), complemented by linear mixed-effects modeling to estimate progression and sample sizes.While SARA subitem responsiveness varied between ataxia severities, gait/stance showed a robust granular linear scaling across the broadest range (SARA25; 2.7-fold sample size). Use of a novel rank-optimized SARA without subitems finger-chase and nose-finger reduces sample sizes by 20-25%.This study comprehensively characterizes COA properties and annualized changes of the SARA across and within a large number of ataxias. It suggests specific approaches for optimizing its responsiveness that might facilitate regulatory qualification and trial design. This article is protected by copyright. All rights reserved

    Non-motor symptom burden in patients with Parkinson's disease with impulse control disorders and compulsive behaviours: results from the COPPADIS cohort.

    Get PDF
    The study was aimed at analysing the frequency of impulse control disorders (ICDs) and compulsive behaviours (CBs) in patients with Parkinson's disease (PD) and in control subjects (CS) as well as the relationship between ICDs/CBs and motor, nonmotor features and dopaminergic treatment in PD patients. Data came from COPPADIS-2015, an observational, descriptive, nationwide (Spain) study. We used the validated Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease-Rating Scale (QUIP-RS) for ICD/CB screening. The association between demographic data and ICDs/CBs was analyzed in both groups. In PD, this relationship was evaluated using clinical features and treatment-related data. As result, 613 PD patients (mean age 62.47 ± 9.09 years, 59.87% men) and 179 CS (mean age 60.84 ± 8.33 years, 47.48% men) were included. ICDs and CBs were more frequent in PD (ICDs 12.7% vs. 1.6%, p < 0.001; CBs 7.18% vs. 1.67%, p = 0.01). PD patients had more frequent previous ICDs history, premorbid impulsive personality and antidepressant treatment (p < 0.05) compared with CS. In PD, patients with ICDs/CBs presented younger age at disease onset, more frequent history of previous ICDs and premorbid personality (p < 0.05), as well as higher comorbidity with nonmotor symptoms, including depression and poor quality of life. Treatment with dopamine agonists increased the risk of ICDs/CBs, being dose dependent (p < 0.05). As conclusions, ICDs and CBs were more frequent in patients with PD than in CS. More nonmotor symptoms were present in patients with PD who had ICDs/CBs compared with those without. Dopamine agonists have a prominent effect on ICDs/CBs, which could be influenced by dose

    In vivo cholinergic basal forebrain degeneration and cognition in Parkinson's disease: Imaging results from the COPPADIS study

    Get PDF
    COPPADIS Study Group.[Introduction] We aimed to assess associations between multimodal neuroimaging measures of cholinergic basal forebrain (CBF) integrity and cognition in Parkinson's disease (PD) without dementia.[Methods] The study included a total of 180 non-demented PD patients and 45 healthy controls, who underwent structural MRI acquisitions and standardized neurocognitive assessment through the PD-Cognitive Rating Scale (PD-CRS) within the multicentric COPPADIS-2015 study. A subset of 73 patients also had Diffusion Tensor Imaging (DTI) acquisitions. Volumetric and microstructural (mean diffusivity, MD) indices of CBF degeneration were automatically extracted using a stereotactic CBF atlas. For comparison, we also assessed multimodal indices of hippocampal degeneration. Associations between imaging measures and cognitive performance were assessed using linear models.[Results] Compared to controls, CBF volume was not significantly reduced in PD patients as a group. However, across PD patients lower CBF volume was significantly associated with lower global cognition (PD-CRStotal: r = 0.37, p < 0.001), and this association remained significant after controlling for several potential confounding variables (p = 0.004). Analysis of individual item scores showed that this association spanned executive and memory domains. No analogue cognition associations were observed for CBF MD. In covariate-controlled models, hippocampal volume was not associated with cognition in PD, but there was a significant association for hippocampal MD (p = 0.02).[Conclusions] Early cognitive deficits in PD without dementia are more closely related to structural MRI measures of CBF degeneration than hippocampal degeneration. In our multicentric imaging acquisitions, DTI-based diffusion measures in the CBF were inferior to standard volumetric assessments for capturing cognition-relevant changes in non-demented PD.This work was supported by the Alzheimer Forschung Initiative e.V. (AFI International Training Grant to MJG), the Instituto de Salud Carlos III-Fondo Europeo de Desarrollo Regional (ISCIII-FEDER) [PI14/01823, PI16/01575, PI18/01898, PI19/01576, PI20/00613], the Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía [CVI-02526, CTS-7685], the Consejería de Salud y Bienestar Social de la Junta de Andalucía [PI-0471-2013, PE-0210-2018, PI-0459-2018, PE-0186-2019], the Fundación Alicia Koplowitz and the Fundación “Curemos el Parkinson” (https://www.curemoselparkinson.org). MJG is supported by the “Miguel Servet” program [CP19/00031], MALE by the University of Seville [USE-20046-J], JFM by the “Sara Borrell” program [CD13/00229] and VI-PPIT-US from the University of Seville [USE-18817-A], SJ by the “Acción B-Clínicos-Investigadores” program [B-0007-2019], and DMG by the “Río Hortega” program [CM18/00142].Peer reviewe

    The ARCA Registry: A Collaborative Global Platform for Advancing Trial Readiness in Autosomal Recessive Cerebellar Ataxias.

    Get PDF
    Autosomal recessive cerebellar ataxias (ARCAs) form an ultrarare yet expanding group of neurodegenerative multisystemic diseases affecting the cerebellum and other neurological or non-neurological systems. With the advent of targeted therapies for ARCAs, disease registries have become a precious source of real-world quantitative and qualitative data complementing knowledge from preclinical studies and clinical trials. Here, we review the ARCA Registry, a global collaborative multicenter platform (>15 countries, >30 sites) with the overarching goal to advance trial readiness in ARCAs. It presents a good clinical practice (GCP)- and general data protection regulation (GDPR)-compliant professional-reported registry for multicenter web-based capture of cross-center standardized longitudinal data. Modular electronic case report forms (eCRFs) with core, extended, and optional datasets allow data capture tailored to the participating site's variable interests and resources. The eCRFs cover all key data elements required by regulatory authorities [European Medicines Agency (EMA)] and the European Rare Disease (ERD) platform. They capture genotype, phenotype, and progression and include demographic data, biomarkers, comorbidity, medication, magnetic resonance imaging (MRI), and longitudinal clinician- or patient-reported ratings of ataxia severity, non-ataxia features, disease stage, activities of daily living, and (mental) health status. Moreover, they are aligned to major autosomal-dominant spinocerebellar ataxia (SCA) and sporadic ataxia (SPORTAX) registries in the field, thus allowing for joint and comparative analyses not only across ARCAs but also with SCAs and sporadic ataxias. The registry is at the core of a systematic multi-component ARCA database cluster with a linked biobank and an evolving study database for digital outcome measures. Currently, the registry contains more than 800 patients with almost 1,500 visits representing all ages and disease stages; 65% of patients with established genetic diagnoses capture all the main ARCA genes, and 35% with unsolved diagnoses are targets for advanced next-generation sequencing. The ARCA Registry serves as the backbone of many major European and transatlantic consortia, such as PREPARE, PROSPAX, and the Ataxia Global Initiative, with additional data input from SPORTAX. It has thus become the largest global trial-readiness registry in the ARCA field

    Clinical and structural brain correlates of hypomimia in early-stage Parkinson's disease

    Get PDF
    Altres ajuts: acord transformatiu CRUE-CSICBackground and purpose: Reduced facial expression of emotions is a very frequent symptom of Parkinson's disease (PD) and has been considered part of the motor features of the disease. However, the neural correlates of hypomimia and the relationship between hypomimia and other non-motor symptoms of PD are poorly understood. Methods: The clinical and structural brain correlates of hypomimia were studied. For this purpose, cross-sectional data from the COPPADIS study database were used. Age, disease duration, levodopa equivalent daily dose, Unified Parkinson's Disease Rating Scale part III (UPDRS-III), severity of apathy and depression and global cognitive status were collected. At the imaging level, analyses based on gray matter volume and cortical thickness were used. Results: After controlling for multiple confounding variables such as age or disease duration, the severity of hypomimia was shown to be indissociable from the UPDRS-III speech and bradykinesia items and was significantly related to the severity of apathy (β = 0.595; p < 0.0001). At the level of neural correlates, hypomimia was related to motor regions brodmann area 8 (BA 8) and to multiple fronto-temporo-parietal regions involved in the decoding, recognition and production of facial expression of emotions. Conclusion: Reduced facial expressivity in PD is related to the severity of symptoms of apathy and is mediated by the dysfunction of brain systems involved in motor control and in the recognition, integration and expression of emotions. Therefore, hypomimia in PD may be conceptualized not exclusively as a motor symptom but as a consequence of a multidimensional deficit leading to a symptom where motor and non-motor aspects converge

    Mutational spectrum of GNAL, THAP1 and TOR1A genes in isolated dystonia: study in a population from Spain and systematic literature review

    Get PDF
    [Objective] We aimed to investigate the prevalence of TOR1A, GNAL and THAP1 variants as the cause of dystonia in a cohort of Spanish patients with isolated dystonia and in the literature.[Methods] A population of 2028 subjects (including 1053 patients with different subtypes of isolated dystonia and 975 healthy controls) from southern and central Spain was included. The genes TOR1A, THAP1 and GNAL were screened using a combination of high-resolution melting analysis and direct DNA resequencing. In addition, an extensive literature search to identify original articles (published before 10 August 2020) reporting mutations in TOR1A, THAP1 or GNAL associated to dystonia was performed.[Results] Pathogenic or likely pathogenic variants in TOR1A, THAP1 and GNAL were identified in 0.48%, 0.57% and 0.29% of our patients, respectively. Five patients carried the variation p.Glu303del in TOR1A. A very rare variant in GNAL (p.Ser238Asn) was found as a putative risk factor for dystonia. In the literature, variations in TOR1A, THAP1 and GNAL accounted for about 6%, 1.8% and 1.1% of published dystonia patients, respectively.[Conclusions] There is a different genetic contribution to dystonia of these three genes in our patients (about 1.3% of patients) and in the literature (about 3.6% of patients), probably due the high proportion of adult-onset cases in our cohort. As regards age at onset, site of dystonia onset, and final distribution, in our population there is a clear differentiation between DYT-TOR1A and DYT-GNAL, with DYT-THAP1 likely to be an intermediate phenotype.This work was supported by the Carlos III Health Institute-European Regional Development Fund (ISCIII-FEDER) [PI14/01823, PI16/01575, PI18/01898, PI19/01576], the Andalusian Regional Ministry of Economics, Innovation, Science and Employment [CVI-02526, CTS-7685], the Andalusian Regional Ministry of Health and Welfare [PI-0741-2010, PI-0471-2013, PE-0210-2018, PI-0459-2018, PE-0186-2019], and the Alicia Koplowitz and Mutua Madrileña Foundations. Pilar Gómez-Garre was supported by the "Miguel Servet" program [MSII14/00018] (from ISCIII-FEDER) and “Nicolás Monardes” program [C-0048-2017] (from the Andalusian Regional Ministry of Health). Silvia Jesús was supported by the "Juan Rodés" program [B-0007-2019] and Daniel Macías-García by the “Río Hortega” program [CM18/00142] (both from ISCIII-FEDER). María Teresa Periñán was supported by the Spanish Ministry of Education [FPU16/05061]. Cristina Tejera was supported by VPPI-US from the University of Seville.Peer reviewe

    Heterogeneity of prodromal Parkinson symptoms in siblings of Parkinson disease patients

    Get PDF
    A prodromal phase of Parkinson’s disease (PD) may precede motor manifestations by decades. PD patients’ siblings are at higher risk for PD, but the prevalence and distribution of prodromal symptoms are unknown. The study objectives were (1) to assess motor and non-motor features estimating prodromal PD probability in PD siblings recruited within the European PROPAG-AGEING project; (2) to compare motor and non-motor symptoms to the well-established DeNoPa cohort. 340 PD siblings from three sites (Bologna, Seville, Kassel/Goettingen) underwent clinical and neurological evaluations of PD markers. The German part of the cohort was compared with German de novo PD patients (dnPDs) and healthy controls (CTRs) from DeNoPa. Fifteen (4.4%) siblings presented with subtle signs of motor impairment, with MDS-UPDRS-III scores not clinically different from CTRs. Symptoms of orthostatic hypotension were present in 47 siblings (13.8%), no different to CTRs (p = 0.072). No differences were found for olfaction and overall cognition; German-siblings performed worse than CTRs in visuospatial-executive and language tasks. 3/147 siblings had video-polysomnography-confirmed REM sleep behavior disorder (RBD), none was positive on the RBD Screening Questionnaire. 173/300 siblings had &lt;1% probability of having prodromal PD; 100 between 1 and 10%, 26 siblings between 10 and 80%, one fulfilled the criteria for prodromal PD. According to the current analysis, we cannot confirm the increased risk of PD siblings for prodromal PD. Siblings showed a heterogeneous distribution of prodromal PD markers and probability. Additional parameters, including strong disease markers, should be investigated to verify if these results depend on validity and sensitivity of prodromal PD criteria, or if siblings’ risk is not elevated

    A geroscience approach for Parkinson's disease: Conceptual framework and design of PROPAG-AGEING project

    Get PDF
    Advanced age is the major risk factor for idiopathic Parkinson's disease (PD), but to date the biological relationship between PD and ageing remains elusive. Here we describe the rationale and the design of the H2020 funded project “PROPAG-AGEING”, whose aim is to characterize the contribution of the ageing process to PD development. We summarize current evidences that support the existence of a continuum between ageing and PD and justify the use of a Geroscience approach to study PD. We focus in particular on the role of inflammaging, the chronic, low-grade inflammation characteristic of elderly physiology, which can propagate and transmit both locally and systemically. We then describe PROPAG-AGEING design, which is based on the multi-omic characterization of peripheral samples from clinically characterized drug-naïve and advanced PD, PD discordant twins, healthy controls and "super-controls", i.e. centenarians, who never showed clinical signs of motor disability, and their offspring. Omic results are then validated in a large number of samples, including in vitro models of dopaminergic neurons and healthy siblings of PD patients, who are at higher risk of developing PD, with the final aim of identifying the molecular perturbations that can deviate the trajectories of healthy ageing towards PD development
    corecore