3,095 research outputs found

    Controlled nanochannel lattice formation utilizing prepatterned substrates

    Full text link
    Solid substrates can be endued with self-organized regular stripe patterns of nanoscopic lengthscale by Langmuir-Blodgett transfer of organic monolayers. Here we consider the effect of periodically prepatterned substrates on this process of pattern formation. It leads to a time periodic forcing of the oscillatory behavior at the meniscus. Utilizing higher order synchronization with this forcing, complex periodic patterns of predefined wavelength can be created. The dependence of the synchronization on the amplitude and the wavelength of the wetting contrast is investigated in one and two spatial dimensions and the resulting patterns are discussed. Furthermore, the effect of prepatterned substrates on the pattern selection process is investigated

    Surface Analysis of OFE-Copper X-Band Accelerating Structures and Possible Correlation to RF Breakdown Events

    Full text link
    X-band accelerator structures meeting the Next Linear Collider (NLC) design requirements have been found to suffer vacuum surface damage caused by radio frequency (RF) breakdown, when processed to high electric-field gradients. Improved understanding of these breakdown events is desirable for the development of structure designs, fabrication procedures, and processing techniques that minimize structure damage. RF reflected wave analysis and acoustic sensor pickup have provided breakdowns localization in RF structures. Particle contaminations found following clean autopsy of four RF-processed travelling wave structures, have been catalogued and analyzed. Their influence on RF breakdown, as well as that of several other material-based properties, will be discussed.Comment: 21 pages, 8 figures, 4 tables, Submitted to JVST A as a proceeding of the 50th AVS conference (Baltimore, MD, 2-7 Nov 2003

    Status of the MINOS experiment

    Full text link
    I will present the status of the long baseline neutrino oscillation experiment MINOS at Fermi National Accelerator Laboratory (Fermilab). I will summarize the status of the detector and beam construction, the expected event rates and sensitivity to physics. I will also comment on possible future plans to improve the performance of the experiment.Comment: Invited talk at the Seventh International Workshop on Tau Lepton Physics (TAU02), Santa Cruz, Ca, USA, Sept 2002, 7 pages, 6 figures, LaTeX Higher res figures at http://minos.phy.bnl.gov/~diwan/tau02_th08.p

    Study of Scintillator Strip with Wavelength Shifting Fiber and Silicon Photomultiplier

    Full text link
    The performance of the 200×2.5×1200\times2.5\times1 cm3^3 plastic scintillator strip with wavelength shifting fiber read-out by two novel photodetectors called Silicon PhotoMultipliers (SiPMs) is discussed. The advantages of SiPM relative to the traditional multichannel photomultiplier are shown. Light yield and light attenuation measurements are presented. This technique can be used in muon or calorimeter systems.Comment: 9 pages, 5 figure

    Faster Exploration of Some Temporal Graphs

    Get PDF
    A temporal graph G = (G_1, G_2, ..., G_T) is a graph represented by a sequence of T graphs over a common set of vertices, such that at the i-th time step only the edge set E_i is active. The temporal graph exploration problem asks for a shortest temporal walk on some temporal graph visiting every vertex. We show that temporal graphs with n vertices can be explored in O(k n^{1.5} log n) days if the underlying graph has treewidth k and in O(n^{1.75} log n) days if the underlying graph is planar. Furthermore, we show that any temporal graph whose underlying graph is a cycle with k chords can be explored in at most 6kn days. Finally, we demonstrate that there are temporal realisations of sub cubic planar graphs that cannot be explored faster than in ?(n log n) days. All these improve best known results in the literature

    The K-Centre Problem for Necklaces

    Get PDF
    In graph theory, the objective of the k-centre problem is to find a set of kk vertices for which the largest distance of any vertex to its closest vertex in the kk-set is minimised. In this paper, we introduce the kk-centre problem for sets of necklaces, i.e. the equivalence classes of words under the cyclic shift. This can be seen as the k-centre problem on the complete weighted graph where every necklace is represented by a vertex, and each edge has a weight given by the overlap distance between any pair of necklaces. Similar to the graph case, the goal is to choose kk necklaces such that the distance from any word in the language and its nearest centre is minimised. However, in a case of k-centre problem for languages the size of associated graph maybe exponential in relation to the description of the language, i.e., the length of the words l and the size of the alphabet q. We derive several approximation algorithms for the kk-centre problem on necklaces, with logarithmic approximation factor in the context of l and k, and within a constant factor for a more restricted case

    Capillary Filling of Anodized Alumina Nanopore Arrays

    Full text link
    The filling behavior of a room temperature solvent, perfluoromethylcyclohexane, in approximately 20 nm nanoporous alumina membranes was investigated in situ with small angle x-ray scattering. Adsorption in the pores was controlled reversibly by varying the chemical potential between the sample and a liquid reservoir via a thermal offset, Δ\DeltaT. The system exhibited a pronounced hysteretic capillary filling transition as liquid was condensed into the nanopores. These results are compared with Kelvin-Cohan theory, with a modified Derjaguin approximation, as well as with predictions by Cole and Saam.Comment: 4 pages, 3 figures, pre-proof

    Deformation of a nearly hemispherical conducting drop due to an electric field: theory and experiment

    Get PDF
    We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly-hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel plate capacitor. Using both numerical and asymptotic approaches we find solutions to the coupled electrostatic and augmented Young–Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle and pressure as functions of the zero-field contact angle, drop radius, surface tension and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained

    Elongation of confined ferrofluid droplets under applied fields

    Full text link
    Ferrofluids are strongly paramagnetic liquids. We study the behavior of ferrofluid droplets confined between two parallel plates with a weak applied field parallel to the plates. The droplets elongate under the applied field to reduce their demagnetizing energy and reach an equilibrium shape where the magnetic forces balance against the surface tension. This elongation varies logarithmically with aspect ratio of droplet thickness to its original radius, in contrast to the behavior of unconfined droplets. Experimental studies of a ferrofluid/water/surfactant emulsion confirm this prediction.Comment: 12 pages, 7 figures. Submitted to Phys. Rev.
    corecore