
Faster Exploration of Some Temporal Graphs
Duncan Adamson #

Department of Computer Science, Reykjavik University, Iceland

Vladimir V. Gusev #

Materials Innovation Factory, University of Liverpool, UK
Department of Computer Science, University of Liverpool

Dmitriy Malyshev #

Laboratory of Algorithms and Technologies for Network Analysis, HSE University,
Nizhny Novgorod, Russian Federation

Viktor Zamaraev #

Department of Computer Science, University of Liverpool, UK

Abstract
A temporal graph G = (G1, G2, . . . , GT) is a graph represented by a sequence of T graphs over a
common set of vertices, such that at the ith time step only the edge set Ei is active. The temporal
graph exploration problem asks for a shortest temporal walk on some temporal graph visiting every
vertex. We show that temporal graphs with n vertices can be explored in O(kn1.5 log n) days if
the underlying graph has treewidth k and in O(n1.75 log n) days if the underlying graph is planar.
Furthermore, we show that any temporal graph whose underlying graph is a cycle with k chords can
be explored in at most 6kn days. Finally, we demonstrate that there are temporal realisations of
sub cubic planar graphs that cannot be explored faster than in Ω(n log n) days. All these improve
best known results in the literature.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity problems

Keywords and phrases Temporal Graphs, Graph Exploration

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.5

Funding Duncan Adamson: Funded by the Leverhulme trust.
Vladimir V. Gusev: Funded by the Leverhulme trust.
Dmitriy Malyshev: The work of Dmitriy Malyshev was conducted within the framework of the Basic
Research Program at the National Research University Higher School of Economics (HSE).

1 Introduction

In many real world settings, networks are not static objects but instead have unstable connec-
tions that vary with time. Temporal graphs provide a model for such time-varying networks.
Formally, a temporal graph G is a sequence (G1, G2, G3, . . . , GT) of undirected graphs, called
snapshots, that all share the same vertex set V , but whose edge sets E1, E2, E3, . . . , ET ,
respectively, may differ. The number T + 1 is called the lifetime of G and we refer to i,
0 ≤ i ≤ T , as a time i or day i. The graph G = (V, E1 ∪E2 ∪· · ·∪ET) is called the underlying
graph of G, and G is said to be a temporal realisation of G. A pair (e, i), where e ∈ Ei is
called a time edge of G. A temporal walk from v1 ∈ V starting at time t to vk ∈ V is an
alternating sequence of vertices and time edges v1, (e1, i1), v2, . . . , vk−1, (ek−1, ik−1), vk such
that ej = {vj , vj+1} ∈ Eij for 0 ≤ j ≤ k − 1 and t ≤ i1 < ij < . . . < ik−1. The time ik−1 + 1
is called the arrival time of the walk.

Motivated by the central role of the Travelling Salesman problem in the world of static
graphs, Michail and Spirakis [7] introduced and initiated the study of the natural temporal
analogue called the Temporal Graph Exploration problem (TEXP for brevity). The
goal of TEXP is to compute a temporal walk with the earliest arrival time that starts in a
given vertex s ∈ V and visits (i.e., explores) all vertices of the temporal graph. It is often

© Duncan Adamson, Vladimir V. Gusev, Dmitriy Malyshev, and Viktor Zamaraev;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 5; pp. 5:1–5:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:duncana@ru.is
mailto:Vladimir.Gusev@liverpool.ac.uk
mailto:dsmalyshev@rambler.ru
mailto:viktor.zamaraev@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.SAND.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Faster Exploration of Some Temporal Graphs

convenient to describe a construction of an exploration temporal walk as the actions of an
agent that is initially located at some starting vertex s and that can in every day i either
stay at its current node or move to a node u that is adjacent to its current node in Ei. In the
latter case, the agent departs from the current vertex at time i and arrives at u at time i + 1.

The decision version of TEXP in which one has to decide if at least one exploration
schedule exists in a given temporal graph from a given starting vertex is an NP-complete
problem [7]. In fact, this decision problem remains NP-complete even if the underlying
graph has pathwidth 2 and every snapshot is a tree [2], or even if the underlying graph is a
star and the exploration has to start and end at the center of the star [1].

Michail and Spirakis [7] proved that TEXP admits no (2 − ε)-approximation algorithm
for any ε > 0, unless P=NP. In other words, there is no polynomial time algorithm that
outputs an exploration schedule whose arrival time is at most (2 − ε) times the arrival time of
an optimal exploration schedule. This was substantially strengthened by Erlebach et. al. [3]
who established NP-hardness of n1−ε-approximation for any ε > 0. In fact, the result was
shown for always-connected temporal graphs, i.e., temporal graphs in which every snapshot
is a connected graph. This connectedness assumption makes the above inapproximability
result tight, because one the one hand, obviously, any exploration cannot be done faster than
in n − 1 days, and on the other hand any always-connected temporal graph can be explored
in at most n2 days [7].

The strong inapproximability result for TEXP on always-connected temporal graphs
motivated the study into bounds on the length of fastest exploration schedules for such
temporal graphs and the present work contributes to this line of research. For convenience,
from now on, unless specified otherwise we assume that every temporal graph is always-
connected and has lifetime at least n2. In [3] Erlebach et. al. demonstrated that for some
temporal graphs any exploration requires Ω(n2) days, and thus showed that the upper bound
of Michail and Spirakis [7] is asymptotically best possible. This result naturally led the
investigation to consider restricted temporal graphs.

One natural way to restrict a temporal graph is to restrict its underlying graph. In this
direction, Erlebach et. al. [3] showed that temporal realisations of planar graphs can be
explored in O(n1.8 log n) days; temporal realisations of graphs of treewidth at most k can be
explored in O(k1.5n1.5 log n) days; temporal realisations of 2 × n grids can be explored in
O(n log3 n) days. They also showed that temporal realisations of a cycle or a cycle with a
single chord can be explored in O(n) days, and conjectured that any temporal graph whose
underlying graph is a cycle with at most k chords can be explored in no more than f(k) · n

days, where f(k) is some function. This conjecture was recently proved by Alamouti [8] with
a factorial-type function f(k) = k2k!ek. In [4] Erlebach et. al. proved that any temporal
graph in which every snapshot is a bounded-degree graph (in particular, temporal realisations
of bounded-degree graphs) can be explored in O(n1.75) days. On the negative side, Erlebach
et. al. [3] constructed temporal realisations of planar graphs of degree at most 4 that cannot
be explored faster than in Ω(n log n) days.

In [5] Erlebach and Spooner considered TEXP under another natural restriction on the
input temporal graphs. Namely, they studied TEXP on k-edge-deficient temporal graphs, i.e.,
temporal graphs in which every snapshot is obtained from the underlying graph by removing
at most k edges. They showed that k-edge-deficient and 1-edge-deficient temporal graphs
can be explored in O(kn log n) and O(n) days, respectively, and constructed k-edge-deficient
temporal graphs that cannot be explored faster than in Ω(n log k) days.

D. Adamson, V. V. Gusev, D. Malyshev, and V. Zamaraev 5:3

Table 1 Summary of the new algorithms we provide for exploring temporal graphs versus the
previous best known bounds.

Setting Known Bounds Our Bounds
Cycles with k-Chords O(6k2 · k! · (2e)kn) ([8]) O(kn)
Treewidth-k graphs O(k1.5n1.5 log(n)) ([3]) O(kn1.5 log(n))
Planar graphs O(n1.8 log(n)) ([3]) O(n1.75 log(n))

Our contribution

In this work we improve a number of bounds on exploration of temporal graphs with
underlying graphs from restricted classes of graphs. Table 1 provides a summary of these
results and how they compare to the best known current bounds. First, in Section 2 we
show that a temporal realisation of a cycle with k chords can be explored in at most 6kn

days. Next, in Section 3 we first strengthen the exploration bound of Erlebach et. al. [3] for
temporal realisations of graphs admitting a (r, b)-division; then using this bound we prove
that any temporal realisation of a planar graph can be explored in O(n1.75 log n) days and
any temporal realisation of a graph of treewidth at most k can be explored in O(kn1.5 log n)
days. Finally, in Section 4 we demonstrate that there are temporal realisations of planar
graphs of degree at most 3 that cannot be explored faster than Ω(n log n). The latter result
is tight in the sense that temporal realisations of graphs of degree at most 2 are explorable
in O(n) days.

Notation and tools

For a vertex set W ⊆ V we denote by G[W] the temporal subgraph of G induced by W ,
i.e., the temporal graph (G1[W], G2[W], G3[W], . . . , GT [W]), where for a static graph G the
notation G[W] means the subgraph of G induced by W . In the our proofs we will employ
two useful lemmas from [3].

▶ Lemma 1 (reachability, [3]). Let G be a (not necessarily always-connected) temporal graph
with a vertex set V . Let U ⊆ V be a set of vertices of G of size k, and let u, v ∈ U . If there
exists a set of k − 1 snapshots each of which has a path from u to v that contains only vertices
from U , then an agent can reach v starting from u and moving only in these k − 1 snapshots.

Notice that a straightforward consequence of the above lemma is that a temporal graph can
always be explored in at most n2 days by visiting vertices in an arbitrary order and spending
at most n days to move from one vertex to the next.

The following lemma is a general reduction that transforms a multi-agent exploration
schedule to a single-agent one. In the multi-agent setting, there are several agents that all
start at the same vertex and move or stay put in every day independently from each other.
Similarly to the single-agent setting, the goal is to visit (explore) every vertex of the temporal
graph by at least one agent as soon as possible.

▶ Lemma 2 (multi-agent to single-agent, [3]). Let G be a graph on n vertices. If any temporal
realisation of G can be explored in t days with k agents, then any temporal realisation of G

can be explored in O((t + n)k log n) days with one agent.

SAND 2022

5:4 Faster Exploration of Some Temporal Graphs

2 Cycles with bounded number of chords

Erlebach et al. proved in [3] that a temporal realisation of a cycle can be explored in at most
2n − 2 days, and this is a tight bound in the sense that there exist temporal realisations
of cycles on n vertices for which any optimal exploration requires at least 2n − 3 days. In
the same work it was further shown that any temporal realisation of a cycle with one chord
can be explored in at most 7n days. Furthermore, the authors conjectured that temporal
realisations of cycles with a constant number of chords are explorable in O(n) days. This
conjecture was confirmed in [8] where the author has shown that a temporal realisation of a
cycle with k chords can be explored in at most 6k2 · k! · (2e)kn days. In the present section
we strengthen this result by showing that any temporal realisation of a cycle with k chords
can be explored in 6kn days. We start with the following auxiliary lemma.

▶ Lemma 3. Let G = (G1, G2, . . . , G2n) be an n-vertex temporal graph of lifetime T = 2n,
and let G be the underlying graph of G. Let P = (v1, v2, . . . , vρ), ρ ≥ 1, be a path in G such
that every vertex of P , except possibly its endpoints v1 and vρ, has degree 2 in G. Moreover,
in every snapshot of G at most one edge of P is absent. Then there exists a vertex v ∈ V (G)
such that all vertices of P can be explored starting from v.

Proof. If there exists n snapshots in G, in which all edges of P are present, then clearly the
vertices of P can be explored in this n snapshots starting from any of the endpoints of P . It
can therefore be assumed that there are less than n such snapshots, i.e., there are at least
n + 1 snapshots in which exactly one edge of P is absent. We can therefore assume without
loss of generality that the first n + 1 snapshots G1, G2, . . . , Gn+1 of G miss exactly one edge.

Observe that as every snapshot is connected and exactly one edge of P is absent in every
snapshot, for every i ∈ {1, 2, . . . , n + 1} the graph Hi = Gi − {v1, . . . , vρ−1} is connected.
Therefore, by Lemma 1, in the temporal graph H = (H1, H2, . . . , Hn+1) every vertex can
reach any other vertex in at most n − (ρ − 1) − 1 = n − ρ days. For every i ∈ {1, 2, . . . , ρ},
let Ji denote some fixed temporal walk from v1 to vρ in H that starts at time i and has the
earliest arrival time. Note that the arrival time of Ji is at most n − ρ + i.

Now assume there are n+1 agents a1, a2, . . . , an+1 that are initially placed at the vertices
of G as follows: agent ai is located at vi for every i ∈ {0, 1, . . . , ρ − 1} and all the other
n − ρ + 1 agents aρ, aρ+1, aρ+2, . . . , an are located at vertex vρ. Every day each agent will
either move or stay at its current vertex. To describe the movement rules, let the score µt(a)
of an agent a at time t as equal to the number vertices of P that a visited by time t. In
particular, µ2(ai) = 1 for every i ∈ {1, 2, . . . , n + 1}. Now, if the score µt(a) of an agent a at
time t is ρ + 1, then a does not move. Otherwise the movement of the agent a at day t is
determined according to the following rules:
1. a is at vertex vρ at time t. If µt(a) is the minimum among all agents that are currently

at vρ, then a moves to vρ−1. Otherwise a stays at vρ. If there are multiple agents with
the minimum value of µt(a), then only the agent with the minimum index moves and
all other stay at vρ. If there is no edge between vρ and vρ−1 at time t, then the moving
agent dies;

2. a is at vertex vi at time t, for some i ∈ {1, 2, 3, . . . , ρ − 1}. Then a moves to vi−1. As
before, if there is no edge between vi and vi−1 at time t, then a dies;

3. a is at vertex v1 at time t. Then starting from time t the agent a moves according to the
temporal walk Jt.

Observe that at every day at most one agent can die, and therefore after n days at least one
of the agents survives. This leaves the problem of showing that any such agent has visited
all vertices of P . To this end, let ai be an agent that is alive after n days.

D. Adamson, V. V. Gusev, D. Malyshev, and V. Zamaraev 5:5

If i ≥ ρ, then, according to the initial positions and the moving rules, ai will start moving
from vertex vρ at day i − ρ, and will visit one new vertex of P every day. Since i ≤ n, after
i − ρ + ρ ≤ n days ai visits all vertices of P and stops moving.

Suppose now that i < ρ. According to the rules, after the first i days, the agent ai

moves along the path P and visits the vertices vi, vi−1, . . . , v1. After visiting all these
vertices the score µi(ai) of ai at time i is equal to i + 1 and the agent continues to move
following the temporal temporal walk Ji. Let t∗ be the time when ai arrives at vρ. Observe
that µt∗(ai) = i + 2 and t∗ ≤ n − ρ + i. By the end of day t∗, there could be at most
n − ρ − t∗ + i agents at vertex vρ with a smaller score than the score µt∗(ai) of ai: at most
n − ρ + 1 − (t∗ + 1) = n − ρ − t∗ agents that were initially located at vρ and have not departed
until the end of day t∗ and at most i agents ai, ai−1, . . . , a1 that arrived at vρ earlier or at
the same time as ai (and have not departed until the end of day t∗). All other agents at vρ

at time t∗, if any, have larger scores. Hence, the agent ai will depart from vρ no later than
on day

t∗ + (n − ρ − t∗ + i) + 1 = n − ρ + i + 1 = n − (ρ − i − 1),

and therefore it will survive for further ρ − i − 1 days thus visiting the remaining ρ − i − 1
vertices vρ−1, vρ−2, . . . , vi+1 of P . ◀

▶ Theorem 4. A temporal realisation of a cycle with n vertices and k chords can be explored
in at most 6kn days.

Proof. Let G be a temporal realisation of an n-vertex cycle with k chords and let G be the
underlying graph of G. Let us denote by C the underlying cycle of G, and let a1, a2, . . . , as,
s ≤ 2k, be the distinct vertices of C, ordered according to their clockwise appearance on the
cycle, which are incident with at least one of the chords. For every i ∈ {1, 2, . . . , s}, let Pi be
the subpath of C that one obtains by following the cycle clockwise starting at ai and ending
at ai+1, where the summation is modulo s.

Let i ∈ {1, 2, . . . , s} be an arbitrary fixed index. Note that all internal vertices of Pi have
degree 2 in the underlying graph G. This together with the connectivity of the snapshots of
G imply that at every day at most one edge of Pi is absent. Therefore, Pi and the temporal
graph obtained by restricting G to any sequence of 2n consecutive snapshots satisfy the
assumptions of Lemma 3. Hence, the vertices of Pi can be visited during any sequence
of 3n − 1 consecutive snapshots: Using Lemma 3, in the first n − 1 snapshots we reach a
vertex v guaranteed by Lemma 3, and in the subsequent 2n snapshots, by Lemma 3, we visit
all the vertices of Pi starting from v. Since the index i was chosen arbitrarily, the above
procedure can be repeated for each of the s paths, which implies that G be explored in at
most 2k(3n − 1) < 6kn days. ◀

3 Underlying graphs with (r, b)-divisions

In [3] Erlebach et al. showed that any temporal realisation of an n-vertex graph of treewidth
k can be explored in O(k1.5n1.5 log n) days, and any temporal realisation of an n-vertex
planar graph can be explored in O(n1.8 log n) days. The key ingredient in the proofs of both
results was the following

▶ Theorem 5 (Theorem 4.3, [3]). A temporal graph G, whose underlying graph has a (r, b)-
division1, can be explored in O

(
(n + r2b) nb

r log n
)

days.

1 The notion of (r, b)-division is formally defined in Section 3.1

SAND 2022

5:6 Faster Exploration of Some Temporal Graphs

In Section 3.1 we obtain a stronger version of the above theorem, which we apply in Section 3.2
to improve the exploration bounds for temporal realisations of graphs of treewidth k and
planar graphs. The main technical contribution that allows us to strengthen Theorem 5 is
Lemma 6 saying that if two vertex sets S and U in an n-vertex temporal graph G are such
that |U | ≤ |S| and in every snapshot of G for every vertex u ∈ U there exists a path between
u and a vertex in S, then |S| agents starting at the vertices of S (one agent per vertex) can
explore vertices in U and return to their original positions in at most 4|S|n days.

3.1 Tools
For a graph G = (V, E), we say that a vertex v ∈ V is reachable from a vertex u ∈ V in G if
there is a path from u to v in G. We also say that a subset S ⊆ V reaches a subset U ⊆ V

in G, if every vertex u ∈ U is reachable from some vertex in S. For a temporal graph G and
subsets S and U of its vertices, we say that S always reaches U in G, if S reaches U in every
snapshot of G.

▶ Lemma 6. Let G be a not necessarily always-connected temporal graph with vertex set V ,
let S be a subset of V of cardinality s, and let U be a subset of V with |U | ≤ s. If S always
reaches U in G and the lifetime of G is at least 4sn, then s agents starting at the vertices of
S (one agent per vertex) can explore vertices in U and return to their original positions.

Proof. Let S = {x1, x2, . . . , xs} and let a1, a2, . . . , as denote the agents that are initially
located at the vertices x1, x2, . . . , xs respectively. For convenience, we assume that every
vertex in U holds a token, and we restrict our consideration only to the exploration schedules
in which the agents collect all the tokens from the vertices in U and bring them to the agents’
original locations. We assume that every agent can carry at most one token at a time. We
say that a vertex u ∈ U is explored by an agent a, if a starts at its original position, visits u,
takes the token of u, moves back to its original location, where she drops the token. A day on
which agent a returns to its original location and drops the token of u will be called a return
day of a. The assumption that an agent can carry only one token at a time implies that
the agent can explore at most one vertex between any two consecutive visits to its original
location.

Let U = {u1, u2, . . . , ur} and, for every i ∈ [r], denote by ti the earliest day by which the
agents can explore i vertices in U . We will prove by induction on i that ti ≤ 2n(s + i − 1).
As r ≤ s, the inequality for i = r will imply the lemma.

For the base case i = 1, we need to show that at least one vertex in U can be explored
by day 2ns. Since every vertex in U is reachable from a vertex in S in every snapshot, by
the pigeonhole principle, vertex u1 is reachable from some fixed vertex x ∈ S in at least 2n

snapshots out of the first 2ns snapshots. Hence, by Lemma 1, the agent of x can explore u1
by day 2ns.

Let now 1 < i ≤ r and assume that the agents can explore i − 1 vertices by time
ti−1 ≤ 2n(s + i − 2). Suppose, towards a contradiction, that the agents cannot explore i

vertices in the first 2n(s + i − 1) days. Let us fix a fastest exploration schedule in which the
agents explore i−1 vertices in U . Without loss of generality, assume that the vertices explored
under this schedule are u1, u2, . . . , ui−1. For k ∈ [s], let ℓk be the number of vertices explored
by agent ak in the first 2n(s + i − 1) days; note that ℓ1 + ℓ2 + . . . + ℓs = i − 1. Furthermore,
we denote by d

(k)
1 < d

(k)
2 < . . . < d

(k)
ℓk

the return days of agent ak and call (d(k)
1 , d

(k)
2 , . . . , d

(k)
ℓk

)
the vector of return days of ak. We also assume, without loss of generality, that the schedule
is minimal in the sense that there is no schedule in which all the agents explore the same
number of vertices in U , and all the agents have the same vectors of return days, except one
of the agents, say ak, that has a vector of return days that is lexicographically smaller than
(d(k)

1 , d
(k)
2 , . . . , d

(k)
ℓk

).

D. Adamson, V. V. Gusev, D. Malyshev, and V. Zamaraev 5:7

Next, for an arbitrary but fixed k ∈ [s], we will count the number of snapshots in the
first 2n(s + i − 1) days in which vertex ui is reachable from vertex xk. We claim that in
each of the time intervals [1, d

(k)
1 − 1], [d(k)

j + 1, d
(k)
j+1 − 1], j ∈ [ℓk − 1], [d(k)

ℓk
+ 1, 2n(s + i − 1)]

there are at most 2(n − 1) such snapshots. Indeed, if the interval [1, d
(k)
1 − 1] or any of the

intervals [d(k)
j + 1, d

(k)
j+1 − 1], j ∈ [ℓk − 1] would contain 2(n − 1) snapshots in which vertex ui

is reachable from vertex xk, then we could amend the schedule of agent ak by ordering her to
explore ui during this time interval and keeping the schedule the same in the other intervals.
This would produce a schedule in which ak would have a lexicographically smaller vector of
return days than (d(k)

1 , d
(k)
2 , . . . , d

(k)
ℓk

), contradicting the minimality of the schedule. Also, if
the last interval [d(k)

ℓk
+ 1, 2n(s + i − 1)] would contain 2(n − 1) snapshots in which vertex ui

is reachable from vertex xk, then agent ak could explored ui in this interval, contradicting
the assumption that the agents cannot explore i vertices in the first 2n(s + i − 1) days. Hence
the total number of snapshot in which ui is reachable from vertex xk in the first 2n(s + i − 1)
snapshots is at most 2(n − 1)(ℓk + 1) + ℓk. Consequently, the total number of snapshots in
which ui is reachable from any vertex in S in the first 2n(s + i − 1) snapshots is at most

s∑
k=1

(
2(n − 1)(ℓk + 1) + ℓk

)
= 2(n − 1)(s + i − 1) + i − 1 < 2n(s + i − 1),

which contradicts the assumption that S always reaches U in G. ◀

We will now use Lemma 6 to prove a stronger version of Theorem 5. The notion of
(r, b)-division was introduced by Erlebach et al. [3] and it generalizes the notion of r-divisions
used by Frederickson [6]. For positive integers r and b (which might be functions of n), a
(r, b)-division of a graph G = (V, E) with n vertices is given by a set S ⊆ V and a partition
of G[V \ S] into O(n/r) (not necessarily connected) components, each associated with a
boundary set consisting of vertices from S, such that the following properties hold:
(1) Each component contains at most r vertices.
(2) The boundary set of each component has size at most b.
(3) The boundary sets of different components may overlap, and the union of the boundary

sets of all components is S.
(4) Every edge of G that has only one endpoint in a component has its other endpoint in

the boundary set of that component.

▶ Theorem 7. A temporal graph G, whose underlying graph has a (r, b)-division, can be
explored in O

(
(n + max{r, b}(r + b)) nb

r log n
)

days.

Proof. We will use b agents to explore all O(n/r) components one by one. Consider the
exploration of a component C and its boundary set B. Since the graph is always-connected,
the definition of (r, b)-division implies that B always reaches C in G[B ∪ C], which allows
us to apply Lemma 6 as follows. First, using Lemma 1, we position at most b agents at
the boundary vertices in at most n − 1 days. Next, we partition |C| into ⌊|C|/|B|⌋ subsets,
each with |B| elements, and the subset of the |C| − |B| ⌊|C|/|B|⌋ remaining elements. By
Lemma 6, any of these subsets can be explored in 4|B|(|C|+ |B|) days in G[B ∪C]. Therefore,
C can be explored in O ((⌊|C|/|B|⌋ + 1)|B|(|C| + |B|)) = O(max{r, b}(r + b)) days, and the
set B ∪ C in O(n + max{r, b}(r + b)) days. Consequently, the entire graph G can be explored
in O((n+max{r, b}(r +b)) n

r) days using b agents, and hence, by Lemma 2, it can be explored
in O((n + max{r, b}(r + b)) nb

r log n) days with a single agent. ◀

SAND 2022

5:8 Faster Exploration of Some Temporal Graphs

3.2 Applications

3.2.1 Bounded treewidth graphs
It was shown in [3] that temporal graphs whose underlying graph has treewidth at most k

can be explored in O(k1.5n1.5 log n) days. This bound provides an improvement over the
general O(n2) bound whenever k = o

(
n1/3/ log2/3 n

)
. A key ingredient of the proof of this

result was the fact that graphs with treewidth at most k admit a
(
2
√

n/k, 6k
)
-division (see

Lemma 4.4 in [3]). Using exactly the same proof as in [3], but replacing
√

n
k and

√
nk with√

n everywhere, one can obtain the following

▶ Lemma 8 (adaptation of Lemma 4.4 [3]). Any graph of treewidth at most k admits a(
2
√

n, 6k
)
-division.

We will use this latter fact together with Theorem 7 to derive an improved exploration bound
for graphs of treewidth at most k.

▶ Theorem 9. An n-vertex temporal graph, whose underlying graph has treewidth at most k,
can be explored in O(kn1.5 log n) days.

Proof. We can assume, without loss of generality, that k = o(n0.5), as otherwise the bound in
the statement becomes ω(n2) and the result clearly holds. Under this assumption, Lemma 8
and Theorem 7 imply that an n-vertex temporal graph, whose underlying graph has treewidth
at most k, can be explored in O ((n +

√
n(

√
n + k))

√
nk log n) = O(kn1.5 log n) days. ◀

We note that Theorem 9 improves the previous bound from [3] as well as implies an
improvement over the general O(n2) bound for graphs with treewidth k = o

(
n0.5/ log n

)
.

3.2.2 Planar graphs
It was shown in [3] that temporal realisations of planar graphs can be explored in O(n1.8 log n)
days. We will follow a similar strategy as in [3] but use our Theorem 7 to reduce the bound
to O(n1.75 log n).

▶ Theorem 10. An n-vertex temporal graph, whose underlying graph is planar, can be
explored in O(n1.75 log n) days.

Proof. Frederickson proved that planar graphs admit (r, O(
√

r))-divisions for any 1 ≤ r ≤ n

[6]. Applying this result with r =
√

n and Theorem 7 we conclude that a temporal
realisation of an n-vertex planar graph can be explored in O

(
(n + r(r +

√
r)) n√

r
log n

)
=

O
(
(n2/

√
r + r1.5n) log n

)
= O

(
n1.75 log n

)
days. ◀

4 Subcubic planar graphs

Temporal realisations of graphs of maximum degree at most 2 can be explored in linear
time. Indeed, a connected graph of maximum degree 2 is either a path or a cycle. Temporal
realisations of paths are trivially explorable in linear time, because every snapshot in such
temporal graphs must be the same connected graph. As shown in [3], temporal realisations
of cycles are also explorable in linear time. On the other hand, it was proved in [3] that some
temporal realisations of planar graphs of maximum degree 4 cannot be explored faster than
in Ω(n log n) days even if every snapshot is a path.

D. Adamson, V. V. Gusev, D. Malyshev, and V. Zamaraev 5:9

u v1

v2

v3

v4

u1

u2

u3

u4

v4

v1

v2

v3

Figure 1 An illustration of the transformation from the neighbourhood around the vertex v in G

to the 4-cycle (u1, u2, u3, u4) in H.

▶ Theorem 11 (Theorem 4.1, [3]). There exist temporal realisations of n-vertex planar graphs
of maximum degree 4, in which every snapshot is a path, that cannot be explored faster than
Ω(n log n) days.

This leaves an intriguing open case of exploration time of temporal realisations of planar
graphs of maximum degree 3. In particular, are such temporal graphs always explorable in
linear time? As we shall see below, in general, such temporal graphs can require Ω(n log n)
days for their exploration. To prove the result, we will transform the construction from the
proof of Theorem 11 and apply the following edge contraction lemma from [3].

▶ Lemma 12 (edge contraction, Lemma 2.4, [3]). Let G be a graph such that every temporal
realisation of G with lifetime at least t can be explored in t days. Let G′ be a graph that is
obtained from G by contracting edges. Then every temporal realisation of G′ with lifetime t

can also be explored in t days.

▶ Theorem 13. There exist temporal realisations of n-vertex subcubic planar graphs that
cannot be explored faster than Ω(n log n) days.

Proof. Let n′ ≥ 16, let G be an n′-vertex planar graph of maximum degree 4, and let G be
a temporal realisation of G for which every exploration requires at least cn′ log n′ days for
some positive constant c. Such G and G exist by Theorem 11.

From graph G we obtain a graph H as follows. For every vertex u in G with 4 neigh-
bours v1, v2, v3, v4, we delete u from G, add 4 new vertices u1, u2, u3, u4, forming a 4-cycle
(u1, u2, u3, u4), and add 4 new edges {u1, v1}, {u2, v2}, {u3, v3}, {u4, v4} (see Figure 1). Let
n be the number of vertices in H. Clearly, n′ ≤ n ≤ 4n′ and G is obtained from H by
contracting edges. Furthermore, it is not hard to see that H is planar and every vertex in
H has degree at most 3. Therefore, there exists a temporal realisation H of H for which
every exploration requires at least cn′ log n′ days. Indeed, otherwise, by Lemma 12, G could
be explored in less than cn′ log n′ days, which would contradict our assumption. Hence, H
cannot be explored in less than

cn′ log n′ ≥ c
n

4 log n

4 ≥ c

8n log n = Ω(n log n)

days, where the latter inequality uses the assumption that n ≥ 16. ◀

▶ Remark. We note that in the temporal graph G from the proof of Theorem 11 every
snapshot is a path. The transformation in the above proof of Theorem 13 can be easily
specified in such a way that every snapshot in H is also a path. We leave the details to the
interested reader.

SAND 2022

5:10 Faster Exploration of Some Temporal Graphs

References
1 Eleni C Akrida, George B Mertzios, Paul G Spirakis, and Christoforos Raptopoulos. The

temporal explorer who returns to the base. Journal of Computer and System Sciences,
120:179–193, 2021.

2 Hans L Bodlaender and Tom C van der Zanden. On exploring always-connected temporal
graphs of small pathwidth. Information Processing Letters, 142:68–71, 2019.

3 Thomas Erlebach, Michael Hoffmann, and Michael Kammer. On temporal graph exploration.
Journal of Computer and System Sciences, 119:1–18, 2021.

4 Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T Spooner. Two
moves per time step make a difference. In 46th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019.

5 Thomas Erlebach and Jakob T. Spooner. Exploration of k-edge-deficient temporal graphs. In
Anna Lubiw and Mohammad Salavatipour, editors, Algorithms and Data Structures, pages
371–384, Cham, 2021. Springer International Publishing.

6 Greg Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal of Computing, 16:1004–1022, 1987.

7 Othon Michail and Paul G Spirakis. Traveling salesman problems in temporal graphs. Theor-
etical Computer Science, 634:1–23, 2016.

8 Shadi Taghian Alamouti. Exploring temporal cycles and grids. Master’s thesis, Concordia
University, 2020.

	1 Introduction
	2 Cycles with bounded number of chords
	3 Underlying graphs with (r,b)-divisions
	3.1 Tools
	3.2 Applications
	3.2.1 Bounded treewidth graphs
	3.2.2 Planar graphs

	4 Subcubic planar graphs

