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We consider, both theoretically and experimentally, the deformation due to an

electric field of a pinned nearly-hemispherical static sessile drop of an ionic fluid

with a high conductivity resting on the lower substrate of a parallel plate capacitor.

Using both numerical and asymptotic approaches we find solutions to the coupled

electrostatic and augmented Young–Laplace equations which agree very well with

the experimental results. Our asymptotic solution for the drop interface extends

previous work in two ways, namely to drops that have zero-field contact angles that

are not exactly π/2 and to higher order in the applied electric field, and provides

useful predictive equations for the changes in the height, contact angle and pressure

as functions of the zero-field contact angle, drop radius, surface tension and applied

electric field. The asymptotic solution requires some numerical computations, and so

a surprisingly accurate approximate analytical asymptotic solution is also obtained.

a)Author to whom correspondence should be addressed. Email: s.k.wilson@strath.ac.uk
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I. INTRODUCTION

There is a growing technology-driven interest in using external influences to move or shape

small quantities of fluids. The use of electrical, rather than mechanical, forces to achieve

this manipulation is convenient because the resulting devices contain no moving parts. The

deformation or actuation of conducting drops can be achieved via a variety of techniques,

including electrophoresis, electrowetting, and dielectrophoresis.

In electrophoresis the drop may be suspended in air or in an insulating fluid medium.

Transferring charge onto the drop enables it to be moved in a DC electric field using

Coulombic forces.1–3

In electrowetting on dielectric (EWOD) a conducting sessile drop rests on a substrate

which consists of an electrode coated with a thin dielectric layer. The drop can be made to

reduce its contact angle and hence to spread over the substrate through the application of

a DC or an AC electric field between the drop and the electrode. Charge accumulates in

the drop at the interface of the wetted area of the substrate, and equal and opposite charge

accumulates on the electrode. The dielectric layer acts like a parallel plate capacitor and the

drop reduces its contact angle until the sum of the capacitive energy and the substrate and

interfacial surface energies in the system are minimised.4 EWOD is becoming an established

technology for drop manipulation and handling in digital microfluidics systems.5,6

A related effect arises from dielectrophoresis (DEP) forces which occur when

a dielectric medium is placed within a non-uniform electric field. In this situa-

tion the non-uniformity of the electric field results in unequal Lorentz forces at

the two poles of any dipole within the dielectric, leading to a resultant force. In

liquid DEP the dielectric contributions to the forces on a drop arise from the

field-induced polarisation of bound charge within molecules and from the par-

tial reorientation of any permanent molecular dipoles that are present.7,8 The

non-uniform electric field creates a force on the drop interface which may be

characterised by the Maxwell electric stress.9 The drop interface deforms to bal-

ance this force with those due to the interfacial surface tension and gravity. The

EWOD and DEP forces are intimately related; for example the standard EWOD drop spread-

ing analysis may be re-cast as resulting from DEP forces arising at the droplet contact line,

where the electric field is strongly non-uniform. Indeed, both effects arise from the Lorentz
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FIG. 1. Sketch of the geometry of a pinned sessile drop resting on the lower substrate of a parallel

plate capacitor. This substrate consists of an electrode coated with a thin dielectric layer. (a) No

electric field applied. (b) An electric field applied across the capacitor deforms the drop, causing a

change ∆h in the height of the drop apex, and a change ∆θc in the contact angle.

force characterised by the Maxwell electric stress and are properly regarded as aspects of the

same phenomenon.10,11 Like EWOD, liquid DEP has been exploited for moving

drops and deforming drop interfaces, as well as to create forced wetting and

spreading.12–14

Forces can also arise on an electrically isolated neutral conducting drop when mobile

free charges of opposite sign separate and polarise to opposite sides of the drop. Since this

phenomenon involves free, rather than bound, charge it is normally described as “contactless”

electrowetting.15,16

The present study concerns the deformation due to an electric field of a drop of ionic

fluid with a high conductivity. If a neutral drop is placed in a region of uniform electric field

any mobile charges arrange so that the electric field intensity is zero inside the drop. The

electric field around the drop is distorted and becomes non-uniform since the drop interface

is an equipotential and therefore the electric field lines must be normal to the interface. As

in liquid DEP, this non-uniform electric field creates a force on the drop interface, causing

it to deform. Taylor17 showed how this mechanism causes a free initially spherical drop to

elongate and form a spheroid which is prolate in the direction of the applied external electric

field.

The geometry used in our theoretical and experimental study is shown in Figure 1. A

pinned sessile drop rests on the lower substrate of a parallel plate capacitor. This substrate
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consists of an electrode coated with a thin dielectric layer. With no electric field applied the

drop adopts an equilibrium shape determined by the balance between the interfacial surface

tension and gravity. An electric field applied across the capacitor deforms the drop, causing

a change ∆h in the height of the drop apex, and a change ∆θc in the contact angle.

Previous experimental work on the deformation of sessile conducting drops in this geom-

etry has included work on soap bubbles,18 polymer drops,19 water drops in air,20–22 water

drops immersed in dielectric oil,23 and various alcohols in air.24–26 As well as different fluids,

these experiments also considered different substrate treatments (untreated, hydrophilic and

hydrophobic), and therefore the zero-field contact angles of the drops varied greatly (specif-

ically from 15 to 160 degrees). As noted by Vancauwenberghe et al.,27 these experiments

shows that, depending of the specific situation studied, the effect of applying an

electric field may be either to increase or to decrease the contact angle of the

drop.

Theoretical work in this geometry has tended to employ numerical techniques

to solve the electrohydrodynamic equations for the electric field, flow field and

drop interface. To simplify the process, many authors consider small drops for

which the effect of gravity may be neglected.18,19,28–30 For instance, Basaran and

co-authors used a finite-element method to calculate the equilibrium shape and

stability of perfectly conducting,18 and linearly28 and non-linearly polarizable29

dielectric axisymmetric sessile drops in an electric field. They considered drops

with either a pinned contact line or a fixed contact angle both with and without

the effect of gravity. Reznik et al.19 considered the evolution of perfectly con-

ducting axisymmetric drops with pinned contact lines in the Stokes-flow limit.

More recently, Ferrera et al.30 considered the evolution of perfectly conducting

and leaky dielectric pendant drops with pinned contact lines. Both of these

works used different numerical techniques to calculate the drop evolution up to

the point of drop break-up when jetting is initiated from the drop apex, and

produced results which agreed well with the appropriate experiments.

Basaran & Scriven18 also performed an asymptotic analysis in the limit of a small electric

field for initially hemispherical conducting drops when gravity is negligible. They showed

that, when an electric field is applied, drops with fixed contact angles of π/2 evolve into

a family of spheroidal shapes, while drops with fixed contact lines evolve into a family of

4



conical shapes.

In the present work we consider, both theoretically and experimentally, the deformation

due to an electric field of a pinned nearly-hemispherical static sessile drop of an ionic fluid

with a high conductivity resting on the lower substrate of a parallel plate capacitor. Using

both numerical and asymptotic approaches we find solutions to the coupled electrostatic and

augmented Young–Laplace equations which agree very well with the experimental results.

Our asymptotic solution for the drop interface extends that of Basaran & Scriven18 in two

ways, namely to drops that have zero-field contact angles that are not exactly π/2 and

to higher order in the applied electric field, and provides useful predictive equations for the

changes in the height, contact angle and pressure as functions of the zero-field contact angle,

drop radius, surface tension and applied electric field. The asymptotic solution requires some

numerical computations, and so a surprisingly accurate approximate analytical asymptotic

solution is also obtained.

The remainder of this paper is organised as follows: In §II we describe the experimental

setup and methods. Then, in §III, we present the theoretical model for the equilibrium

shape of the drop. In §IV we describe the numerical scheme used and verify the theoretical

model by comparing the numerical and experimental results. Informed by these results, in

§VA and §VB, we obtain the asymptotic solutions for the drop interface, contact angle,

and pressure in the limit of small applied electric field and small deviations of the zero-field

contact angle from π/2. These asymptotic solutions are compared with the experimental

results in §VC. Conclusions are drawn in §VI.

II. EXPERIMENTAL SETUP

A sessile drop of the ionic fluid butyl methyl imidazolium tetrafluoroborate (BMIMTFB)

rests on the lower substrate of a parallel plate capacitor with gap d between the electrodes.

The electrodes were formed from a continuous layer of transparent conductor, indium tin

oxide (100 Ohm/square, 25 nm thickness, Praezisions Glas and Optik GmbH, Iserlohn, Ger-

many), on borosilicate glass slides. The lower substrate consists of an electrode coated with

a 1 micron thick layer of the dielectric material SU8, as well as a commercial hydrophobic

coating (Grangers International Ltd, Derbyshire, UK) to give contact angles close to π/2.

5



(a) (b) (c) (d)
0 V 700 V 1400 V 2100 V

FIG. 2. Typical experimental images of the drop apex as the applied voltage is increased from 0 V

to 2100 V.

The ionic fluid BMIMTFB has a high conductivity σ of approximately 0.3

Ω−1 m−1.31 It has a low vapour pressure and so shows negligible evaporation during the

experiments.32–34 The surface tension γ of BMIMTFB was found from pendant drop

measurements35 (Drop Shape Analysis, A. Krüss Optronic GmbH, Hamburg, Germany)

to be 40.9± 0.5 mN m−1 and its density ρ of 1120 kg m−3 was taken from the literature.36

In this study AC voltages (applied using a Trek model 609E-6 4 kV amplifier) at 1 kHz

were used, and transparent electrodes enabled the drops to be viewed both from above and

from the side during the experiments. Accurate values for the small changes in height in the

range 1 to 40 µm were obtained using a 10× microscope objective with an extension tube

which imaged the drop apex.

Figure 2 shows typical experimental images of the drop apex as the applied voltage is

increased from 0 V to 2100 V. Images were recorded, contrast enhanced, thresholded, and

the position of the drop apex was accurately obtained using standard imaging functions in

Matlab.37 Experiments were conducted for 23 drops of various sizes with zero-field contact

angles ranging from 88.9 to 98.4 degrees (1.55 to 1.72 radians) and a range of cell gap to

drop radius ratios from 2.26 to 7.07. In all the experiments the drop rapidly became static

and the contact line of the drop was observed to be pinned by surface roughness with no

appreciable movement even at the highest voltages used. Experimental results for the change

in the height of the drop apex ∆h will be shown in §IV.

III. THEORETICAL MODEL

In the theoretical model of the experiments described in §II an axisymmetric drop of a

perfectly conducting fluid rests on the lower substrate of a parallel plate capacitor surrounded
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by air, modelled as a perfect dielectric. Consistent with the experimental results, it is

assumed that the drop is static and the contact line is pinned. We denote the constant

drop base radius by b0 and the zero-field contact angle by θc. At the top electrode the

electric potential is equal to the applied voltage V , and at the bottom electrode it is zero.

The experiments used an AC field, however, since the charge relaxation time

of the fluid is small compared to the reciprocal of the frequency of the field, it

can be accurately represented by a DC field with the appropriate voltage.38 The

electrodes are separated by a constant distance d, and we assume that the thickness of the

dielectric layer on top of the lower electrode is negligible so that the electric potential at the

top of this layer can be assumed to be zero. This is a reasonable approximation given that

the thickness of the dielectric layer (1 µm) is small compared with the other dimensions of

our system: b0 and d are of the order of millimetres.

We use spherical polar coordinates with their origin at the centre of the base of the drop,

with r denoting the distance from the origin and θ the angle that the radial vector makes

with the axis of symmetry, as shown in Figure 3. The drop interface is then defined as the

zero level of the function η = r−R(θ), so that at any particular angle θ the distance of the

drop interface from the origin is r = R(θ).

The electric field E = −∇U , where U(r, θ) is the electric potential, and the drop interface

r = R(θ) are governed by Laplace’s equation in the bulk and the normal stress balance, often

termed the augmented Young–Laplace equation, on the drop interface:

∇2U = 0, (1)

P − pa − ρgR cos θ + n · τ · n = γκ. (2)

Here P − ρgR cos θ is the fluid pressure in which P is the constant modified (i.e. nonhy-

drostatic) pressure, pa is the constant air pressure, ρ is the constant fluid density, τ is the

Maxwell stress in the air, γ is the constant surface tension, κ = ∇ · n is twice the mean

curvature, and the drop interface outward unit normal is

n =
∇η
|∇η| =

(
R√

R2 + (R′)2

)
r̂−

(
R′√

R2 + (R′)2

)
θ̂. (3)

The ijth component of the Maxwell stress τ is given by

τij = ε0ε2

(
EiEj −

1

2
|E|2 δij

)
, (4)
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FIG. 3. Schematic diagram of the theoretical model. When an electric field is applied, the zero-field

sessile drop (shown with a dashed line) deforms (shown with a solid line), causing a change ∆h in

the height of the drop apex, and a change ∆θc in the contact angle, while the contact line remains

pinned.

where δij is the Kronecker delta, ε0 is the permittivity of free space, and ε2 = εair/ε0 is the

relative permittivity of the surrounding air; ε2 is sufficiently close to one that we take it to

be equal to unity.

Since the drop is assumed to be a perfectly conducting fluid, the electric potential inside

the drop is constant, and is determined by the close proximity of the lower electrode which

is fixed at U = 0. The boundary conditions for the electric potential at the two electrodes

as well as at the surface of the drop are therefore

U(r, π/2) = 0, (5)

U(r, θ) = V on r cos θ = d, (6)

U(R, θ) = 0. (7)

The conditions of a fixed contact line at θ = π/2 and zero slope at θ = 0 are given by

R (π/2) = b0, R′(0) = 0, (8)

and the volume of the drop V is given by

V =
2π

3

∫ π/2

0

R3 sin θ dθ, (9)

8



which remains constant when the drop is deformed by the electric field.

The governing equations and boundary conditions are made dimensionless by writing

r = b0r
∗, R = b0R

∗, κ =
1

b0
κ∗, V =

2πb30
3
V∗,

E =
V

d
E∗, U =

V b0
d
U∗, P − pa =

γ

b0
P ∗,

(10)

and we define a non-dimensional electric Bond number, a gravitational Bond number, and

a scaled cell gap as

δ2 =
ε0ε2V

2b0
γd2

, G =
ρgb20
γ

, D =
d

b0
, (11)

respectively.

Then, with the stars dropped for clarity, the electric potential U and the drop interface

R must satisfy

∇2U =
1

r2
∂

∂r

(
r2
∂U

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
= 0, (12)

in the bulk, and

P −GR cos θ + δ2
(

(E · n)2 − 1

2
|E|2

)
= κ, (13)

on the drop interface r = R, subject to the boundary conditions

U(r, π/2) = 0, (14)

U(r, θ) = D on r cos θ = D (15)

U(R, θ) = 0, (16)

R (π/2) = 1, (17)

R′(0) = 0, (18)

and the volume constraint

V =

∫ π/2

0

R3 sin θ dθ. (19)

Once the drop interface and electric potential have been determined, the change in the

height of the drop apex is given by

∆h = R(0)− R(0)|δ2=0 , (20)

where R(0)|δ2=0 is the zero-field height of the drop apex. The change in the contact angle

is given by

∆θc = tan−1
(

1

R′(π/2)

)
− θc, (21)
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where θc is the zero-field contact angle, and the change in the modified pressure is given by

∆P = P − P |δ2=0 , (22)

where P |δ2=0 is the zero-field modified pressure.

IV. NUMERICAL RESULTS AND COMPARISON WITH

EXPERIMENTAL RESULTS

The theoretical model derived in the previous section was solved numerically using an

iterative method implemented using COMSOL Multiphysics39 and Matlab37 as follows: (i)

a numerical solution for Laplace’s equation (12), subject to (14)–(16) was found in a domain

outside a drop in a rectangle of height D and width 20 which is sufficiently large to avoid

boundary effects, where the drop interface R was taken to be the zero-field drop interface,

with P = 0; (ii) the gradients on the drop interface of this solution for U were substituted

into the normal stress balance (13) which was solved numerically, subject to (17), (18) and

(19), to find an updated solution for the drop interface and pressure; (iii) this updated

solution for the drop interface was then substituted into the numerical model for the electric

potential and solved to give an updated solution for the potential U . Steps (ii) and (iii)

were repeated until the solution for the drop interface had converged, specifically until

max
θ∈[0,π2 ]

∣∣∣∣Ri(θ)−Ri−1(θ)

Ri−1(θ)

∣∣∣∣ ≤ ξ, (23)

where ξ is a tolerance and Ri(θ) is the solution for the drop interface at the ith iteration.

Numerical convergence was checked by considering drops with contact angles ranging

from 85 to 95 degrees (1.48 to 1.66 radians) all with the same radius (1 mm) and the same

cell gap (5 mm) for three different tolerances: ξ = 10−4, 10−6, 10−8. For each drop, the

change in the height of the drop apex, ∆h, and the change in the contact angle, ∆θc, for

all three tolerances agreed extremely well. All of the subsequent numerical results were

obtained using the tolerance ξ = 10−6.

Figure 4 shows typical numerical solutions for a drop with a zero-field contact angle of

θc = π/2, gravitational Bond number G = 0.2, and cell gap D = 5. Figure 4 (a) shows

how the drop interface changes as the electric Bond number δ2 is increased; the drop apex

rises towards the top electrode and correspondingly, as a result of volume conservation, the
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FIG. 4. [Revised figure] Typical numerical solutions for a drop with a zero-field contact angle of

θc = π/2, gravitational Bond number G = 0.2, and cell gap D = 5; (a) drop interface with electric

Bond number δ2 = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3; change in (b) the height of the drop apex ∆h,

(c) the contact angle ∆θc, and (d) the modified pressure ∆P , plotted as functions of the electric

Bond number δ2.

contact angle decreases. This is shown in Figures 4 (b), (c), and (d) which show the change

in the height of the drop apex ∆h, the contact angle ∆θc, and the modified pressure ∆P ,

respectively, plotted as functions of δ. As δ2 is increased, ∆h increases from zero, while

∆θc and ∆P decrease from zero. For small values of δ2 the variation is approxi-

mately linear in δ2 and this behaviour is captured by the asymptotic solution

presented subsequently in §V. For larger values of δ2 the curves representing

∆h, ∆θc and ∆P have a fold bifurcation at a critical value of δ2 (δ2 ' 0.32 in the

particular case shown in Figure 4) beyond which no steady solution exists, as

11



−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

FIG. 5. Plot of the numerically computed drop interface, equipotentials (shown with solid lines),

and electric field vectors (shown with arrows) for a drop with a zero-field contact angle of θc = π/2,

gravitational Bond number G = 0.2, cell gap D = 5, and electric Bond number δ2 = 0.1. The

equipotentials are equally spaced between U = 0 and U = D.

described by Basaran & Scriven18.

The numerically computed drop interface, equipotentials, and electric field vectors for the

same drop with a zero-field contact angle of θc = π/2, gravitational Bond number G = 0.2,

cell gap D = 5, and electric Bond number δ2 = 0.1 are shown in Figure 5, which confirms

that the equipotentials and electric field vectors lie perpendicular to each other, and that

close to the drop the equipotentials lie parallel to the drop interface, while far from the drop

they lie parallel to the electrodes.

Figure 6 shows the change in the height of the drop apex ∆h plotted as a function of the

electric Bond number δ2 for nine representative drops out of the 23 studied experimentally

(shown with stars) along with the corresponding numerical solutions (shown with solid lines).

For every experiment the maximum applied voltage was between 2000 V and 2300 V, which

corresponds to maximum electric Bond numbers in the range δ2 = 0.06 to 0.18. These nine

drops were chosen to illustrate the range of parameter values studied: the gravitational Bond

number G which increases from panel (a)–(i), the cell gap D which decreases from panel

(a)–(i), and the zero-field contact angle θc. As Figure 6 shows, there is very good agreement

between the experimental results and the numerical solutions.

Figure 6 also shows numerical solutions using two additional simplifying assumptions:

with gravity neglected, G = 0 (shown with dashed lines), and with the upper electrode

12



infinitely far from the drop, D →∞ (shown with dash-dotted lines). In particular, Figure 6

shows that, when D is greater than approximately three, the assumption of an infinite cell

gap is appropriate. Figure 6 also shows that, unsurprisingly, the assumption of negligible

gravity is appropriate only when G is small, specifically when G is less than approximately

0.1. For many of the 23 experiments, G < 0.1 and D > 3, and so in these experiments

the two additional simplifying assumptions of negligible gravity, G = 0, and an infinite cell

gap, D →∞, are valid. In the next section we will construct an asymptotic solution of the

theoretical model in the limit of small electric Bond numbers and small deviations of the

zero-field contact angle θc from π/2 using these two additional simplifying assumptions.

V. ASYMPTOTIC SOLUTION AND COMPARISON WITH

EXPERIMENTAL RESULTS

A. Asymptotic solution

Since all of the drops studied experimentally have zero-field contact angles θc close to π/2,

and electric Bond numbers δ2 < 0.2, in this section we obtain the asymptotic solution of the

theoretical model in the limit of small electric Bond numbers, δ2 → 0, and zero-field contact

angles which are close to π/2, so that |ε| → 0, where we have written θc = π/2 − ε. For

simplicity, we use the two additional simplifying assumptions of negligible gravity, G = 0,

and an infinite cell gap, D → ∞, discussed previously in §IV. Hence, the boundary

condition on the upper electrode (15) is replaced by the far-field condition

U(r, θ) ∼ r cos θ as r →∞. (24)

The effect of a finite cell gap will be discussed in §VD, while the effect of a fixed contact

angle, rather than a pinned contact line, will be discussed in the Appendix. We note that

the effect of gravity, G 6= 0, could, in principle, also be included; however, in this case

the zero-field drop interface is no longer a spherical cap and so would have to be found

numerically.

When gravity is neglected, for any zero-field contact angle θc, the zero-field drop interface

is a spherical cap which satisfies the quadratic equation

R2 +
2R cos θ

tan θc
− 1 = 0, (25)
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FIG. 6. The change in the height of the drop apex ∆h plotted as a function of the electric Bond

number δ2 for nine representative drops (shown with stars) along with the corresponding numerical

solutions (shown with solid lines). Also shown are numerical solutions using two additional simpli-

fying assumptions: with gravity neglected, G = 0 (shown with dashed lines), and with the upper

electrode infinitely far from the drop, D →∞ (shown with dash-dotted lines).

with the appropriate solution

R =

(
1 +

cos2 θ

tan2 θc

)1/2

− cos θ

tan θc
, (26)

and hence the volume of the drop is given by

V =
2 + cos3 θc − 3 cos θc

2 sin3 θc
, (27)

which is a monotonically increasing function of θc. In the limit ε → 0, the zero-field drop
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interface can be written as

R = 1− ε cos θ +
ε2

2
cos2 θ +O(ε3), (28)

and the volume of the drop (27) becomes

V = 1− 3

2
ε+

3

2
ε2 +O(ε3). (29)

In the limit δ2 → 0 and ε→ 0, solutions for R(θ), U(r, θ) and P take the forms

R(θ) = 1− ε cos θ +
ε2

2
cos2 θ + δ2

(
R2,0 + εR2,1 + ε2R2,2

)
+ δ4

(
R4,0 + εR4,1 + ε2R4,2

)
+O(δ6, ε3), (30)

U(r, θ) = U0,0(r, θ) + εU0,1(r, θ) + ε2U0,2(r, θ) + δ2
(
U2,0(r, θ) + εU2,1(r, θ) + ε2U2,2(r, θ)

)
+ δ4

(
U4,0(r, θ) + εU4,1(r, θ) + ε2U4,2(r, θ)

)
+O(δ6, ε3), (31)

P = P0,0 + εP0,1 + ε2P0,2 + δ2
(
P2,0 + εP2,1 + ε2P2,2

)
+ δ4

(
P4,0 + εP4,1 + ε2P4,2

)
+O(δ6, ε3), (32)

where the subscripts i, j correspond to the exponents of δ and ε, respectively.

Considering each order of the normal stress balance (13) in turn we find at O(1) that

P0,0 = 2, while at O(ε), P0,1 = 0. At O(δ2) we obtain

R′′2,0(θ) + cot θR′2,0(θ) + 2R2,0(θ) = −P2,0 −
1

2

[
U2
0,0r

∣∣
r=1
− U2

0,0θ

∣∣
r=1

]
, (33)

where the subscripts r and θ denote derivatives in the radial and polar directions, respec-

tively. Equation (33) must be solved subject to the boundary conditions R2,0(π/2) = 0,

R′2,0(0) = 0, and the volume constraint∫ π/2

0

R2,0 sin θ dθ = 0. (34)

Substituting the asymptotic expansion (31) for U into (12) and boundary conditions (14)–

(16), we find at O(1) that

U0,0 =

(
r − 1

r2

)
cos θ. (35)

Substituting this solution for U0,0 into (33) leads to the solutions

R2,0(θ) =
3

8
cos θ(3 cos θ − 2), (36)
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and P2,0 = −9/4, recovering the leading order solution for a pinned contact line found

by Basaran & Scriven.18

At O(ε2) we find that P0,2 = −1, while at O(δ2ε) we obtain

R′′2,1(θ)+cot θR′2,1(θ)+2R2,1(θ) = −P2,1−3 cos θ U0,1r|r=1−
3

2
cos θ(3 cos2 θ+2 cos θ+3), (37)

subject to the boundary conditions R2,1(π/2) = 0, R′2,1(0) = 0, and the volume constraint∫ π/2

0

R2,1 sin θ dθ =
1

16
. (38)

Furthermore, at O(δ4) we obtain

R′′4,0(θ) + cot θR′4,0(θ) + 2R4,0(θ)

= −P4,0 − 3 cos θ U2,0r|r=1 +
9

32
cos θ (3 cos θ − 2)

(
9 cos2 θ + 2 cos θ + 6

)
,

(39)

subject to the boundary conditions R4,0(π/2) = 0, R′4,0(0) = 0, and the volume constraint∫ π/2

0

R4,0 sin θ dθ = − 3

160
. (40)

To find R2,1 and R4,0, we need first to find U0,1 and U2,0. At O(ε) the electric potential

satisfies

∇2U0,1 = 0, (41)

subject to the boundary and far-field conditions

U0,1(r, π/2) = 0, (42)

U0,1(1, θ) = 3 cos2 θ, (43)

U0,1(r, θ)→ 0 as r →∞, (44)

while at O(δ2) the electric potential satisfies

∇2U2,0 = 0, (45)

subject to the boundary and far-field conditions

U2,0(r, π/2) = 0, (46)

U2,0(1, θ) = −9

8
cos2 θ(3 cos θ − 2), (47)

U2,0(r, θ)→ 0 as r →∞. (48)
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FIG. 7. The numerical solution (shown with circles) and separable part (shown with a solid line)

for (a) U0,1r|r=1 and (b) U2,0r|r=1 plotted as functions of θ/π.

Unfortunately, we have been unable to find analytical solutions for U0,1 and U2,0. There-

fore we solved the systems of equations (41)–(44) and (45)–(48) for U0,1 and U2,0 numerically

using COMSOL Multiphysics,39 in a domain consisting of a quarter circle of radius r = 100

with a quarter circle of radius r = 1 centred at the origin. The boundary at r = 100 is

located sufficiently far from the origin to provide a good approximation to the infinite cell

gap far-field conditions (44) and (48).

The circles in Figure 7(a) show the numerical solution for U0,1r on the interface r = 1

plotted as a function of θ/π. This solution is used to solve (37) numerically to obtain

P2,1 and R2,1(θ). We find P2,1 = 1.36437 and the circles in Figure 8(a) show the solution

for R2,1(θ) plotted as a function of θ/π. Similarly, the circles in Figure 7(b) show the

numerical solution for U2,0r on the interface r = 1 plotted as a function of θ/π which is

used to solve (39) numerically to obtain P4,0 and R4,0(θ). We find P4,0 = −0.77612 and

the circles in Figure 8(b) show the solution for R4,0(θ) plotted as a function of θ/π. It is

important to note that these calculations do not contain any parameters, and so need to be

carried out only once to obtain the asymptotic solutions.

At the drop apex we find that

R(0) = 1− ε+
3

8
δ2 +

1

2
ε2 − 0.96546δ2ε+ 0.54117δ4 +O(ε3, δ2ε2, δ4ε, δ6), Corrected (49)
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FIG. 8. The numerical solution (shown with circles) and the approximate solution (shown with a

solid line) for (a) R2,1(θ) and (b) R4,0(θ) plotted as functions of θ/π.

and hence the change in the height of the drop apex ∆h is given by

∆h =
3

8
δ2 − 0.96546δ2ε+ 0.54117δ4 +O(δ2ε2, δ4ε, δ6). Corrected (50)

Furthermore, the change in the contact angle ∆θc is given by

∆θc = −3

4
δ2 + 1.36465δ2ε− 0.43861δ4 +O(δ2ε2, δ4ε, δ6), Corrected (51)

and the change in the modified pressure ∆P is given by

∆P = −9

4
δ2 + 1.36437δ2ε− 0.77612δ4 +O(δ2ε2, δ4ε, δ6). Corrected (52)

The change in the height of the drop apex ∆h given by (50), the contact angle ∆θc given

by (51), and the modified pressure ∆P given by (52), are plotted as functions of δ2 and ε

in Figure 9. As ε increases, corresponding to a decrease in the zero-field contact angle, ∆h,

∆θc, and ∆P all decrease for a fixed value of δ2. Recall that the drop volume is a function

of ε (cf. (29)) and as ε increases, the drop volume decreases; hence, it is not surprising that

the change in the height and the change in the contact angle are reduced for drops with

smaller volumes.

B. Approximate asymptotic solution

As an alternative to employing numerical methods to find numerical solutions for the

potentials U0,1 and U2,0, in this section we construct approximate analytical solutions which
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FIG. 9. The change in (a) the height of the drop apex ∆h given by (50), (b) the contact angle

∆θc given by (51), and (c) the modified pressure ∆P given by (52), plotted as functions of δ2 and

ε.

only partially satisfy the full system of equations. Since it is only the boundary condition

at the lower substrate that prevents a separable solution to Laplace’s equation, we consider

approximate solutions of the form U0,1 = U s
0,1 + U r

0,1 and U2,0 = U s
2,0 + U r

2,0, where the

solutions are split into separable and remainder parts. The separable parts are uniquely

determined as a solution of Laplace’s equation with all the boundary conditions except

for the one on the lower substrate. As we shall show, the separable parts turn out to be

in surprisingly good agreement with the numerical solutions except for close to the lower

substrate where we would naturally not expect good agreement since they do not satisfy the

boundary condition there. Hence, to construct an approximate asymptotic solution we will

neglect the remainder parts.
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Specifically, we find that the separable parts are given by

U s
0,1 =

1

r
+

3 cos2 θ − 1

r3
, (53)

U s
2,0 =

3

4r
− 81

40

cos θ

r2
+

3

4

(
3 cos2 θ − 1

r3

)
− 27

40

(
cos θ(5 cos2 θ − 3)

r4

)
. (54)

Figure 7 compares the separable parts U s
0,1r and U s

2,0r on the interface r = 1 (shown with

solid lines) with the numerical solution calculated previously in §VA (shown with circles),

plotted as a function of θ/π. The agreement between the solutions is surprisingly good

except close to the lower substrate at θ = π/2.

Substituting U0,1 = U s
0,1 into (37) gives

R′′2,1(θ) + cot θR′2,1(θ) + 2R2,1(θ) = −P2,1 +
3

2
cos θ(15 cos2 θ − 2 cos θ − 7), (55)

subject to the boundary conditions R2,1(π/2) = 0, R′2,1(0) = 0, and the volume constraint

(38), which has solutions

R2,1(θ) = −1

4
cos θ

(
4 ln(1 + cos θ) + 9 cos2 θ − 3 cos θ − 5

)
(56)

and P2,1 = 1/2. Figure 8(a) compares the approximate solution (56) (shown with a solid

line) with the corresponding numerical solution for R2,1(θ) (shown with circles). There is

surprisingly good agreement between the two solutions even close to the lower substrate at

θ = π/2, even though the right-hand side of (55) is determined by the separable solution

which does not satisfy the boundary condition there.

Substituting U2,0 = U s
2,0 into (39) gives

R′′4,0(θ) + cot θR′4,0(θ) + 2R4,0(θ)

= −P4,0 −
9

160
cos θ

(
585 cos3 θ − 300 cos2 θ − 286 cos θ + 140

)
,

(57)

subject to the boundary conditions R4,0(π/2) = 0, R′4,0(0) = 0, and the volume constraint

(40), which has solutions

R4,0(θ) = − 3

320
cos θ

(
80 ln(1 + cos θ)− 195 cos3 θ + 180 cos2 θ − 156 cos θ + 56

)
(58)

and P4,0 = −57/40. Figure 8(b) compares the approximate solution (58) (shown with a

solid line) with the corresponding full numerical solution for R4,0(θ) (shown with circles),

and again shows that there is surprisingly good agreement between the two solutions.
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From these approximate solutions, the corresponding approximate asymptotic solution

for the change in the height of the drop apex ∆h is given by

∆h =
3

8
δ2 −

(
1

4
+ ln 2

)
δ2ε+

(
69

64
− 3

4
ln 2

)
δ4 +O(δ2ε2, δ4ε, δ6) Corrected

=
3

8
δ2 − 0.94315δ2ε+ 0.55826δ4 +O(δ2ε2, δ4ε, δ6), Corrected

(59)

the change in the contact angle ∆θc is given by

∆θc = −3

4
δ2 +

5

4
δ2ε− 21

40
δ4 +O(δ2ε2, δ4ε, δ6), Corrected (60)

and the change in the modified pressure ∆P is given by

∆P = −9

4
δ2 +

1

2
δ2ε− 57

40
δ4 +O(δ2ε2, δ4ε, δ6). Corrected (61)

Comparing the approximate asymptotic results (59)–(61) with the asymptotic results

given by (50)–(52), we see that the approximate solutions for ∆h and ∆θc agree very well

with the full solution, but the approximate solution for ∆P is in less good agree-

ment. This discrepancy in ∆P , however, is to be expected since the approximate solution

for the electric potential is not accurate close to the lower substrate at θ = π/2, and the

solution for the modified pressure is dependent on the entire drop profile. This method of

obtaining an approximate analytical asymptotic solution could, in principle, be continued

to higher orders, but we do not pursue this any further here.

C. Comparison of experimental results with asymptotic solutions

While, as we have seen, the numerical solutions of the theoretical model agree very well

with the experimental results, it is of interest to see if the asymptotic solution in the limit

of small electric Bond numbers and small deviations of the zero-field contact angle θc from

π/2 obtained with the two additional simplifying assumptions of negligible gravity, G = 0,

and an infinite cell gap, D →∞, also agrees with the experimental results. The asymptotic

solution presented above shows that in the limit δ2 → 0 and ε→ 0, the change in the height

of the drop apex is of the form

∆h = δ2 (α2,0 + α2,1ε) + δ4α4,0 +O(δ2ε2, δ4ε, δ6). Corrected (62)
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FIG. 10. The coefficients of δ2 and δ4 in (62), namely (a) α2,0 + εα2,1 and (b) α4,0, plotted

as functions of ε for each experiment (shown with stars). The solid line shows the asymptotic

solution in the case of an infinite cell gap given by (50), namely α2,0 = 0.375, α2,1 = −0.96546

and α4,0 = 0.54117. The dashed line shows the best-fit values from all 23 experiments, namely

α2,0 = 0.3788± 0.0158, α2,1 = −1.0825± 0.2137 and α4,0 = 0.5099± 0.2218.

To determine the values of the αi,js from the experimental results we use multiple regres-

sion and, since the asymptotic solutions are useful approximations to the full solution only

for sufficiently small values of δ2, we restrict ourselves to values of δ2 < 0.1.

Figure 10 shows the coefficients of δ2 and δ4 in (62), namely α2,0 + εα2,1 and α4,0,

plotted as functions of ε for each experiment (shown with stars). The solid line shows the

asymptotic solution in the case of an infinite cell gap given by (50), namely α2,0 =

0.375, α2,1 = −0.96546 and α4,0 = 0.54117, while the dashed line shows the best-fit values

obtained from all 23 experiments, namely α2,0 = 0.3788± 0.0158, α2,1 = −1.0825± 0.2137

with R2 = 0.55, and α4,0 = 0.5099 ± 0.2218 with R2 = 0.003. These experimentally-

determined values agree well with the asymptotic solution, although the latter value of

R2 is very low. This low value of R2 is as a result of the large amount of scatter in the

experimental values of α4,0, and, in particular, reflects the fact that the level of error in the

experimental values is of the same size as δ4; specifically, for small values of δ2, ∆h is of the

order of 10−2 which is of the same order as δ4.
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given by (50).

D. Effect of a finite cell gap

The asymptotic solutions described in the previous subsections are obtained with the

two additional simplifying assumptions of negligible gravity and an infinite cell gap. The

experiments, however, are, of course, conducted with a finite cell gap, and, as we have already

seen, the infinite cell gap approximation is not appropriate for all of the experimental drops.

In the case of a finite gap the boundary condition for the electric potential at the top

electrode is given by (15) and we now have to find solutions for the electric potentials U0,0,

U0,1 and U2,0 and the drop interface R2,0, R2,1 and R4,0 numerically. Figure 11 shows the

numerically calculated values of α2,0, α2,1 and α4,0 plotted as functions of the cell gap

D. As expected, for sufficiently large values of D we recover the previously obtained

constant asymptotic values in the limit of an infinite gap given by (50), namely

α2,0 = 0.375, α2,1 = −0.96546 and α4,0 = 0.54117, but for smaller values of D they

deviate significantly from these values. In particular, we conclude that, in agreement

with what we found from the numerical solutions of the theoretical model in §IV, the infinite

cell gap approximation is valid for D & 3.
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VI. SUMMARY AND DISCUSSION

In the present work we have considered, both theoretically and experimentally, the de-

formation due to an electric field of a pinned nearly-hemispherical static sessile drop

of an ionic fluid with a high conductivity resting on the lower substrate of a parallel plate

capacitor.

Numerical solutions of the theoretical model were found to agree very well with the

experimental results. In addition, numerical solutions using two additional simplifying as-

sumptions of negligible gravity, G = 0, and an infinite cell gap, D →∞, were also compared

with the experimental results. For many of the 23 experiments these two additional sim-

plifying assumptions were valid, and so they were used to construct an asymptotic solution

of the theoretical model in the limit of small electric Bond number, δ2 → 0, and small de-

viations in the zero-field contact angles from π/2, ε → 0. This asymptotic solution for the

drop interface extends that of Basaran & Scriven,18 and provides useful predictive equations

for the change in the height of the drop apex ∆h, the contact angle ∆θc, and the modified

pressure ∆P as functions of the zero-field contact angle θc, drop width b0, surface tension

γ, and applied electric field V/d.

The asymptotic solution required some numerical computations, and so an approximate

analytical asymptotic solution was constructed which did not satisfy the boundary condition

on the lower substrate. The approximate asymptotic solution for the change in the height

of the drop apex ∆h and the change in the contact angle ∆θc agree surprisingly well with

the full solution, although the approximate asymptotic solution for the change in

the modified pressure ∆P is in less good agreement. As well as providing predic-

tive equations for ∆h, ∆θc, and ∆P , the approximate asymptotic solution also provides

an analytical expression for the entire drop profile. The dimensional versions of both the

asymptotic and the approximate analytical asymptotic solutions could have applications in

material parameter estimation, particularly to obtain an estimate for the surface tension γ.

Our approach in this paper may be extended to similar systems, such as the geometry used

to produce voltage-programmable microlenses.40 In this geometry the fluid fills the region

between the electrodes and the upper electrode has an array of aperture holes through which

the fluid protrudes, forming spherical and aspherical microlenses with pinned contact lines.

In addition, future theoretical and experimental work will consider the dynamic response of
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a sessile drop immediately after the abrupt application and the abrupt removal of a voltage.
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Appendix A: Asymptotic solution for a fixed contact angle

In this Appendix we repeat the asymptotic analysis of §V but for a drop with a fixed

contact angle rather than a pinned contact line. The solution process goes through exactly

as before, except that the boundary condition for a pinned contact line (17) is replaced by

the fixed contact angle condition

R′(π/2) = cot θc. (A1)

Recall that we write the zero-field contact angle as θc = π/2− ε, so that in the limit ε→ 0

this boundary condition becomes

R′(π/2) = ε+
ε3

3
+O(ε5). (A2)

As before, we first find the asymptotic solution before finding an approximate analyti-

cal asymptotic solution in which the potentials U0,1 and U2,0 do not satisfy the boundary

condition on the lower substrate.

1. Asymptotic solution

Considering each order of the normal stress balance (13) in turn we find at O(1) that

P0,0 = 2, while at O(ε), P0,1 = 0. At O(δ2) we obtain

R′′2,0(θ) + cot θR′2,0(θ) + 2R2,0(θ) = −P2,0 −
9

2
cos2 θ, (A3)

where we have substituted in the leading order solution for the potential given by (35).

Equation (A3) must be solved subject to the boundary conditions R′2,0(π/2) = 0, R′2,0(0) = 0,
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and the volume constraint (34), which gives the solutions

R2,0(θ) =
3

8

(
3 cos2 θ − 1

)
(A4)

and P2,0 = −3/2, recovering the leading order solution for a fixed contact angle found

by Basaran & Scriven.18

At O(ε2) we find that P0,2 = −1, while at O(δ2ε) we obtain

R′′2,1(θ) + cot θR′2,1(θ) + 2R2,1(θ) = −P2,1 − 3 cos θ U0,1r|r=1 −
9

2
cos θ(cos2 θ + 1), (A5)

subject to the boundary conditions R′2,1(π/2) = 0, R′2,1(0) = 0, and the volume constraint∫ π/2

0

R2,1 sin θ dθ =
3

16
. (A6)

Furthermore, at O(δ4) we obtain

R′′4,0(θ) + cot θR′4,0(θ) + 2R4,0(θ)

= −P4,0 − 3 cos θ U2,0r|r=1 +
9

32

(
3 cos2 θ − 1

) (
9 cos2 θ + 5

)
,

(A7)

subject to the boundary conditions R′4,0(π/2) = 0, R′4,0(0) = 0, and the volume constraint∫ π/2

0

R4,0 sin θ dθ = − 9

80
. (A8)

As in the pinned contact line case, to find R2,1 and R4,0, we need first to find U0,1 and

U2,0. At O(ε) the system of equations governing U0,1 is identical to the pinned contact line

case (41)–(44), while at O(δ2) the electric potential satisfies

∇2U2,0 = 0, (A9)

subject to the boundary and far-field conditions

U2,0(r, π/2) = 0, (A10)

U2,0(1, θ) = −9

8
cos θ

(
3 cos2 θ − 1

)
, (A11)

U2,0(r, θ)→ 0 as r →∞. (A12)

Note that the O(δ4) problem for U2,0 differs only in the boundary condition on the drop

interface (A11) (cf. (47)).
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The system of equations (41)–(44) is solved numerically as in the pinned contact line

case. This solution is then used to solve (A5) numerically to obtain P2,1 and R2,1(θ). We

find P2,1 = 0.74973, and the circles in Figure 12(a) show the solution for R2,1(θ) plotted

as a function of θ/π. In contrast to the pinned contact line case, the system of equations

(A9)–(A12) governing U2,0 is separable and has the analytical solution

U2,0 = − 9

40

(
4 cos θ

r2
+

3(5 cos3 θ − 3 cos θ)

r4

)
. (A13)

Substituting this solution for U2,0 into the equation for R4,0(θ), (A7), gives

R′′4,0(θ) + cot θR′4,0(θ) + 2R4,0(θ) = −P4,0 −
1053

32
cos4 θ +

1647

80
cos2 θ − 45

32
, (A14)

subject to the boundary conditions R′4,0(π/2) = 0, R′4,0(0) = 0, and the volume constraint

(A8), which has solutions

R4,0(θ) =
117

64
cos4 θ +

27

80
cos2 θ − 189

320
(A15)

and P4,0 = −9/10. Figure 12(b) shows the solution for R4,0(θ) plotted as a function of θ/π.
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FIG. 12. (a) The full numerical solution (shown with circles) and the approximate solution (shown

with a solid line) for R2,1(θ) and (b) the analytical solution for R4,0 plotted as functions of θ/π.

At the drop apex we find that

R(0) = 1− ε+
3

4
δ2 +

1

2
ε2 − 2.02278δ2ε+

63

40
δ4 +O(ε3, δ2ε2, δ4ε, δ6), Corrected (A16)

and hence the change in the height of the drop apex ∆h is given by

∆h =
3

4
δ2 − 2.02278δ2ε+

63

40
δ4 +O(δ2ε2, δ4ε, δ6). Corrected (A17)
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In this case, instead of a change in the contact angle ∆θc, we have a change in the radius

∆b which is given by

∆b = R(π/2)− R(π/2)|δ2=0

= −3

8
δ2 + 1.05732δ2ε− 189

320
δ4 +O(δ2ε2, δ4ε, δ6), Corrected

(A18)

and the change in the modified pressure ∆P is given by

∆P = −3

2
δ2 + 0.74973δ2ε− 9

10
δ4 +O(δ2ε2, δ4ε, δ6). Corrected (A19)

2. Approximate asymptotic solution

Proceeding as in §VB, we find that the separable part for U s
0,1 is given by (53). Substi-

tuting this into equation (A5) gives

R′′2,1(θ) + cot θR′2,1(θ) + 2R2,1(θ) = −P2,1 +
3

2
cos θ(15 cos2 θ − 7), (A20)

subject to the boundary conditions R′2,1(π/2) = 0, R′2,1(0) = 0, and the volume constraint

(A6), which has solutions

R2,1(θ) = 1− 9

4
cos3 θ − cos θ ln (1 + cos θ) (A21)

and P2,1 = 0. Figure 12(a) compares the approximate solution (A21) (shown with a solid

line) with the corresponding full numerical solution for R2,1(θ) (shown with circles). There

is surprisingly good agreement between the two solutions even close to the lower substrate

at θ = π/2, even though the right-hand side of (55) is determined by the separable solution

which does not satisfy the boundary condition there.

From these approximate solutions, the corresponding approximate asymptotic solution

for the change in the height of the drop apex ∆h is given by

∆h =
3

4
δ2 −

(
5

4
+ ln 2

)
δ2ε+

63

40
δ4 +O(δ2ε2, δ4ε, δ6) Corrected

=
3

4
δ2 − 1.9431δ2ε+

63

40
δ4 +O(δ2ε2, δ4ε, δ6), Corrected

(A22)

the change in the radius ∆b is given by

∆b = −3

8
δ2 + δ2ε− 189

320
δ4 +O(δ2ε2, δ4ε, δ6), Corrected (A23)
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and the change in the modified pressure ∆P is given by

∆P = −3

2
δ2 − 9

10
δ4 +O(δ2ε2, δ4ε, δ6). Corrected (A24)

Comparing these approximate asymptotic results (A22)–(A24) with the asymptotic results

given by (A17)–(A19), we see that again the approximate solutions for ∆h and ∆b agree

very well with the full solution, but the approximate solution for ∆P is in less good

agreement.
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