428 research outputs found
Size-selective nanoparticle growth on few-layer graphene films
We observe that gold atoms deposited by physical vapor deposition onto few
layer graphenes condense upon annealing to form nanoparticles with an average
diameter that is determined by the graphene film thickness. The data are well
described by a theoretical model in which the electrostatic interactions
arising from charge transfer between the graphene and the gold particle limit
the size of the growing nanoparticles. The model predicts a nanoparticle size
distribution characterized by a mean diameter D that follows a scaling law D
proportional to m^(1/3), where m is the number of carbon layers in the few
layer graphene film.Comment: 15 pages, 4 figure
CLINICAL AND BIOMECHANICAL COMPARISONS BETWEEN YOUTH PITCHERS WITH AND WITHOUT A HISTORY OF THROWING ARM PAIN OR INJUR
This study aimed to determine if there are clinical and kinematic differences in youth pitchers with a self-reported history of throwing arm pain or injury (PI) to those without (NPI). Forty male baseball pitchers ages 9 to 14 years old were divided into a PI group (n=20) and a NPI group (n=20). Injury history, pitching exposure, subject demographics, range of motion, and strength measurements were collected, along with throwing arm kinematics via a motion capture system. When comparing PI and NPI, significant physical differences were observed, with a greater presence of axillary hair, increased forearm length and decreased shoulder internal rotation strength in PI. No significant differences of upper limb motion during pitching were reported. When considering youth pitchers, evidence of physical maturity, arm length, and strength could be important factors in developing pain or injury
Towards Perceived Playfulness and Adoption of Hearables in Smart Cities of China
'Hearables' have become important in the aging population. This study investigates whether smart technologies help middle-aged and elderly people accept hearing aid devices in smart cities of China. The authors adopt the PLS-SEM framework to analyze the factors that affect behavioral intention towards adopting hearing aids in smart cities. In order to avoid common method bias, Harman's single factor method is also carried out to make sure the instrument does not introduce a bias. The findings suggest that perceived playfulness and perceived usefulness are principal determinants of hearing aids adoption. In contrast, perceived ease of use, a factor always stressed in literature, does not matter significantly. The results reveal that smart technologies enable patients to access professional services and instructions playfully, which reduces obstacles to adopt hearing aids. This study provides novel insights for policymakers and manufacturers to expand hearing aid adoption by facilitating smart infrastructure and technologies
Discovery of Two Distant Type Ia Supernovae in the Hubble Deep Field North with the Advanced Camera for Surveys
We present observations of the first two supernovae discovered with the
recently installed Advanced Camera for Surveys (ACS) on the Hubble Space
Telescope. The supernovae were found in Wide Field Camera images of the Hubble
Deep Field North taken with the F775W, F850LP, and G800L optical elements as
part of the ACS guaranteed time observation program. Spectra extracted from the
ACS G800L grism exposures confirm that the objects are Type Ia supernovae (SNe
Ia) at redshifts z=0.47 and z=0.95. Follow-up HST observations have been
conducted with ACS in F775W and F850LP and with NICMOS in the near-infrared
F110W bandpass, yielding a total of 9 flux measurements in the 3 bandpasses
over a period of 50 days in the observed frame. We discuss many of the
important issues in doing accurate photometry with the ACS. We analyze the
multi-band light curves using two different fitting methods to calibrate the
supernovae luminosities and place them on the SNe Ia Hubble diagram. The
resulting distances are consistent with the redshift-distance relation of the
accelerating universe model, although evolving intergalactic grey dust remains
as a less likely possibility. The relative ease with which these SNe Ia were
found, confirmed, and monitored demonstrates the potential ACS holds for
revolutionizing the field of high-redshift SNe Ia, and therefore of testing the
accelerating universe cosmology and constraining the "epoch of deceleration".Comment: 11 pages, 8 embedded figures. Accepted for publication in Ap
Local Causal States and Discrete Coherent Structures
Coherent structures form spontaneously in nonlinear spatiotemporal systems
and are found at all spatial scales in natural phenomena from laboratory
hydrodynamic flows and chemical reactions to ocean, atmosphere, and planetary
climate dynamics. Phenomenologically, they appear as key components that
organize the macroscopic behaviors in such systems. Despite a century of
effort, they have eluded rigorous analysis and empirical prediction, with
progress being made only recently. As a step in this, we present a formal
theory of coherent structures in fully-discrete dynamical field theories. It
builds on the notion of structure introduced by computational mechanics,
generalizing it to a local spatiotemporal setting. The analysis' main tool
employs the \localstates, which are used to uncover a system's hidden
spatiotemporal symmetries and which identify coherent structures as
spatially-localized deviations from those symmetries. The approach is
behavior-driven in the sense that it does not rely on directly analyzing
spatiotemporal equations of motion, rather it considers only the spatiotemporal
fields a system generates. As such, it offers an unsupervised approach to
discover and describe coherent structures. We illustrate the approach by
analyzing coherent structures generated by elementary cellular automata,
comparing the results with an earlier, dynamic-invariant-set approach that
decomposes fields into domains, particles, and particle interactions.Comment: 27 pages, 10 figures;
http://csc.ucdavis.edu/~cmg/compmech/pubs/dcs.ht
Value-Driven Analysis of New Paradigms in Space Architectures: An Ilities-Based Approach
Current commercial, civil, and military space architecture designs perform exquisitely and reliably. However, today’s architecture paradigms are also characterized by expensive launches, large and expensive high-performance spacecraft, long development cycles, and wide variations in ground architectures. While current assets provide high-quality services, and future assets are slated to improve performance within the same design frameworks, proposed future architectures may not be capitalizing on technology improvements, system innovations, or policy alternatives explored during the last two decades. This paper identifies five “trends” along which space architectures may develop, aimed at granting systems several “ilities,” such as resiliency, robustness, flexibility, scalability, and affordability. The trends examined include: commercialization of space, significant reductions in launch costs and the development of hybrid or reusable launch systems, development of on-orbit infrastructure and servicing, aggregation or disaggregation of orbital assets, and the automation and standardization of ground architectures. Further refinement of these key technological and system trends could result in major paradigm shifts in the development and fielding of space operations as well as lead to space architecture designs in the future that are radically different from those today. Within the framework of systems engineering ilities and risk management, this paper reviews current literature surrounding these new change trends and justifies their potential to cause significant paradigm shifts. By examining the work and research conducted so far through an ilities-based approach, systems engineers can more fully appreciate the value being offered by these trends
A research agenda for seed-trait functional ecology
Trait-based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life-history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically. Here we suggest broadening the range of morphological, physiological and biochemical seed traits to add new understanding on plant niches, population dynamics and community assembly. The diversity of seed traits and functions provides an important challenge that will require international collaboration in three areas of research. First, we present a conceptual framework for a seed ecological spectrum that builds upon current understanding of plant niches. We then lay the foundation for a seed-trait functional network, the establishment of which will underpin and facilitate trait-based inferences. Finally, we anticipate novel insights and challenges associated with incorporating diverse seed traits into predictive evolutionary ecology, community ecology and applied ecology. If the community invests in standardized seed-trait collection and the implementation of rigorous databases, major strides can be made at this exciting frontier of functional ecology
Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast
The asymmetric localization of cell fate determinants results in asymmetric cell cycle control in budding yeast
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
- …