5 research outputs found

    Modelling cross-reactivity and memory in the cellular adaptive immune response to influenza infection in the host

    Full text link
    The cellular adaptive immune response plays a key role in resolving influenza infection. Experiments where individuals are successively infected with different strains within a short timeframe provide insight into the underlying viral dynamics and the role of a cross-reactive immune response in resolving an acute infection. We construct a mathematical model of within-host influenza viral dynamics including three possible factors which determine the strength of the cross-reactive cellular adaptive immune response: the initial naive T cell number, the avidity of the interaction between T cells and the epitopes presented by infected cells, and the epitope abundance per infected cell. Our model explains the experimentally observed shortening of a second infection when cross-reactivity is present, and shows that memory in the cellular adaptive immune response is necessary to protect against a second infection.Comment: 35 pages, 12 figure

    The distribution of the time taken for an epidemic to spread between two communities

    No full text
    Assessing the risk of disease spread between communities is important in our highly connected modern world. However, the impact of disease- and population-specific factors on the time taken for an epidemic to spread between communities, as well as the impact of stochastic disease dynamics on this spreading time, are not well understood. In this study, we model the spread of an acute infection between two communities ('patches') using a susceptible-infectious-removed (SIR) metapopulation model. We develop approximations to efficiently evaluate the probability of a major outbreak in a second patch given disease introduction in a source patch, and the distribution of the time taken for this to occur. We use these approximations to assess how interventions, which either control disease spread within a patch or decrease the travel rate between patches, change the spreading probability and median spreading time.We find that decreasing the basic reproduction number in the source patch is the most effective way of both decreasing the spreading probability, and delaying epidemic spread to the second patch should this occur. Moreover, we show that the qualitative effects of interventions are the same regardless of the approximations used to evaluate the spreading time distribution, but for some regions in parameter space, quantitative findings depend upon the approximations used. Importantly, if we neglect the possibility that an intervention prevents a large outbreak in the source patch altogether, then intervention effectiveness is not estimated accurately
    corecore