255 research outputs found

    Melatonin synthesis in the human pineal gland

    Get PDF
    Poster presentation: The mammalian pineal organ is a peripheral oscillator, depending on afferent information from the so-called master clock in the suprachiasmatic nuclei of the hypothalamus. One of the best studied outputs of the pineal gland is the small and hydrophobic molecule melatonin. In all vertebrates, melatonin is synthesized rhythmically with high levels at night, signalling the body the duration of the dark period. Changes or disruptions of melatonin rhythms in humans are related to a number of pathophysiological disorders, like Alzheimer's disease, seasonal affective disorder or the Smith-Magenis-Syndrome. To use melatonin in preventive or curative interferences with the human circadian system, a complete understanding of the generation of the rhythmic melatonin signal in the human pineal gland is essential. Melatonin biosynthesis is best studied in the rodent pineal gland, where the activity of the penultimate and rate-limiting enzyme, the arylalkylamine N-acetyltransferase (AA-NAT), is regulated on the transcriptional level, whereas the regulatory role of the ultimate enzymatic step, achieved by the hydroxyindole O-methyltransferase (HIOMT), is still under debate. In rodents, Aa-nat mRNA is about 100-fold elevated during the night in response to adrenergic stimulation of the cAMP-signalling pathway, with AA-NAT protein levels closely following this dynamics. In contrast, in all ungulates studied so far (cow, sheep), a post-transcriptional regulation of the AA-NAT is central to determine rhythmic melatonin synthesis. AA-NAT mRNA levels are constantly elevated, and lead to a constitutive up-regulation of AA-NAT protein, which is, however, rapidly degraded via proteasomal proteolysis during the day. AA-NAT proteolysis is only terminated upon the nocturnal increase in cAMP levels. Similar to ungulates, a post-transcriptional control of this enzyme seems evident in the pineal gland of the primate Macaca mulatta. Studies on the molecular basis of melatonin synthesis in the human being are sparse and almost exclusively based on phenomenological data, derived from non-invasive investigations. Yet the molecular mechanisms underlying the generation of the hormonal message of darkness can currently only be deciphered using autoptic material. We therefore analyzed in human post-mortem pineal tissue Aa-nat and Hiomt mRNA levels, AA-NAT and HIOMT enzyme activity, and melatonin levels for the first time simultaneously within tissue samples of the same specimen. Here presented data show the feasibility of this approach. Our results depict a clear diurnal rhythm in AA-NAT activity and melatonin content, despite constant values for Aa-nat and Hiomt mRNA, and for HIOMT activity. Notably, the here elevated AA-NAT activity during the dusk period does not correspond to a simultaneous elevation in melatonin content. It is currently unclear whether this finding may suggest a more important role of the ultimate enzyme in melatonin synthesis, the HIOMT, for rate-limiting the melatonin rhythm, as reported recently for the rodent pineal gland. Thus, our data support for the first time experimentally that post-transcriptional mechanisms are responsible for the generation of rhythmic melatonin synthesis in the human pineal gland

    Portal vein thrombosis and arterioportal shunts : effects on tumor response after chemoembolization of hepatocellular carcinoma

    Get PDF
    AIM: To evaluate the effect of portal vein thrombosis and arterioportal shunts on local tumor response in advanced cases of unresectable hepatocellular carcinoma treated by transarterial chemoembolization. METHODS: A retrospective study included 39 patients (mean age: 66.4 years, range: 45-79 years, SD: 7) with unresectable hepatocellular carcinoma (HCC) who were treated with repetitive transarterial chemoembolization (TACE) in the period between March 2006 and October 2009. The effect of portal vein thrombosis (PVT) (in 19 out of 39 patients), the presence of arterioportal shunt (APS) (in 7 out of 39), the underlying liver pathology, Child-Pugh score, initial tumor volume, number of tumors and tumor margin definition on imaging were correlated with the local tumor response after TACE. The initial and end therapy local tumor responses were evaluated according to the response evaluation criteria in solid tumors (RECIST) and magnetic resonance imaging volumetric measurements. RESULTS: The treatment protocols were well tolerated by all patients with no major complications. Local tumor response for all patients according to RECIST criteria were partial response in one patient (2.6%), stable disease in 34 patients (87.1%), and progressive disease in 4 patients (10.2%). The MR volumetric measurements showed that the PVT, APS, underlying liver pathology and tumor margin definition were statistically significant prognostic factors for the local tumor response (P = 0.018, P = 0.008, P = 0.034 and P = 0.001, respectively). The overall 6-, 12- and 18-mo survival rates from the initial TACE were 79.5%, 37.5% and 21%, respectively. CONCLUSION: TACE may be exploited safely for palliative tumor control in patients with advanced unresectable HCC; however, tumor response is significantly affected by the presence or absence of PVT and APS

    Melatonin synthesis in the human pineal gland

    Get PDF

    Signatures of technetium oxidation states: a new approach

    Get PDF
    A general strategy for the determination of Tc oxidation state by new approach involving X-ray absorption near edge spectroscopy (XANES) at the Tc L-3 edge is shown. A comprehensive series of Tc-99 compounds, ranging from oxidation states I to VII, was measured and subsequently simulated within the framework of crystal-field multiplet theory. The observable trends in the absorption edge energy shift in combination with the spectral shape allow for a deeper understanding of complicated Tc coordination chemistry. This approach can be extended to numerous studies of Tc systems as this method is one of the most sensitive methods for accurate Tc oxidation state and ligand characterization

    Simple deprotection of acetal type protecting groups under neutral conditions

    Get PDF
    The hallmarks of Alzheimer's disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network

    Acute cholecystitis – early laparoskopic surgery versus antibiotic therapy and delayed elective cholecystectomy: ACDC-study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute cholecystitis occurs frequently in the elderly and in patients with gall stones. Most cases of severe or recurrent cholecystitis eventually require surgery, usually laparoscopic cholecystectomy in the Western World. It is unclear whether an initial, conservative approach with antibiotic and symptomatic therapy followed by delayed elective surgery would result in better morbidity and outcome than immediate surgery. At present, treatment is generally determined by whether the patient first sees a surgeon or a gastroenterologist. We wish to investigate whether both approaches are equivalent. The primary endpoint is the morbidity until day 75 after inclusion into the study.</p> <p>Design</p> <p>A multicenter, prospective, randomized non-blinded study to compare treatment outcome, complications and 75-day morbidity in patients with acute cholecystitis randomized to laparoscopic cholecystectomy within 24 hours of symptom onset or antibiotic treatment with moxifloxacin and subsequent elective cholecystectomy. For consistency in both arms moxifloxacin, a fluorquinolone with broad spectrum of activity and high bile concentration is used as antibiotic. Duration: October 2006 – November 2008</p> <p>Organisation/Responsibility</p> <p>The trial was planned and is being conducted and analysed by the Departments of Gastroenterology and General Surgery at the University Hospital of Heidelberg according to the ethical, regulatory and scientific principles governing clinical research as set out in the Declaration of Helsinki (1989) and the Good Clinical Practice guideline (GCP).</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00447304</p

    The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping

    Full text link
    IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, functional capabilities, and initial performance of the DOM MB, and the operation of a combined array of DOMs as a system, are described here. Experience with the first InIce strings and the IceTop stations indicates that the system design and performance goals have been achieved.Comment: 42 pages, 20 figures, submitted to Nuclear Instruments and Methods
    corecore