78 research outputs found

    Targeted Transposition of Minicircle DNA Using Single-Chain Antibody Conjugated Cyclodextrin-Modified Poly (Propylene Imine) Nanocarriers

    Get PDF
    Among non-viral vectors, cationic polymers, such as poly(propylene imine) (PPI), play a prominent role in nucleic acid delivery. However, limitations of polycationic polymer-based DNA delivery systems are (i) insufficient target specificity, (ii) unsatisfactory transgene expression, and (iii) undesired transfer of therapeutic DNA into non-target cells. We developed single-chain antibody fragment (scFv)-directed hybrid polyplexes for targeted gene therapy of prostate stem cell antigen (PSCA)-positive tumors. Besides mono-biotinylated PSCA-specific single-chain antibodies (scFv(AM1-P-BAP)) conjugated to neutravidin, the hybrid polyplexes comprise -cyclodextrinmodified PPI as well as biotin/maltose-modified PPI as carriers for minicircle DNAs encoding for Sleeping Beauty transposase and a transposon encoding the gene of interest. The PSCA-specific hybrid polyplexes efficiently delivered a GFP gene in PSCA-positive tumor cells, whereas control hybrid polyplexes showed low gene transfer efficiency. In an experimental gene therapy approach, targeted transposition of a codon-optimized p53 into p53-deficient HCT116p53 /PSCA cells demonstrated decreased clonogenic survival when compared to mock controls. Noteworthily, p53 transposition in PTEN-deficient H4PSCA glioma cells caused nearly complete loss of clonogenic survival. These results demonstrate the feasibility of combining tumor-targeting hybrid polyplexes and Sleeping Beauty gene transposition, which, due to the modular design, can be extended to other target genes and tumor entities

    SOX2-RNAi attenuates S-phase entry and induces RhoA-dependent switch to protease-independent amoeboid migration in human glioma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SOX2, a high mobility group (HMG)-box containing transcription factor, is a key regulator during development of the nervous system and a persistent marker of neural stem cells. Recent studies suggested a role of SOX2 in tumor progression. In our previous work we detected SOX2 in glioma cells and glioblastoma specimens. Herein, we aim to explore the role of SOX2 for glioma malignancy in particular its role in cell proliferation and migration.</p> <p>Methods</p> <p>Retroviral shRNA-vectors were utilized to stably knockdown SOX2 in U343-MG and U373-MG cells. The resulting phenotype was investigated by Western blot, migration/invasion assays, RhoA G-LISA, time lapse video imaging, and orthotopic xenograft experiments.</p> <p>Results</p> <p>SOX2 depletion results in pleiotropic effects including attenuated cell proliferation caused by decreased levels of cyclinD1. Also an increased TCF/LEF-signaling and concomitant decrease in Oct4 and Nestin expression was noted. Furthermore, down-regulation of focal adhesion kinase (FAK) signaling and of downstream proteins such as HEF1/NEDD9, matrix metalloproteinases pro-MMP-1 and -2 impaired invasive proteolysis-dependent migration. Yet, cells with knockdown of SOX2 switched to a RhoA-dependent amoeboid-like migration mode which could be blocked by the ROCK inhibitor Y27632 downstream of RhoA-signaling. Orthotopic xenograft experiments revealed a higher tumorigenicity of U343-MG glioma cells transduced with shRNA targeting SOX2 which was characterized by increased dissemination of glioma cells.</p> <p>Conclusion</p> <p>Our findings suggest that SOX2 plays a role in the maintenance of a less differentiated glioma cell phenotype. In addition, the results indicate a critical role of SOX2 in adhesion and migration of malignant gliomas.</p

    Tumor Evasion from T Cell Surveillance

    Get PDF
    An intact immune system is essential to prevent the development and progression of neoplastic cells in a process termed immune surveillance. During this process the innate and the adaptive immune systems closely cooperate and especially T cells play an important role to detect and eliminate tumor cells. Due to the mechanism of central tolerance the frequency of T cells displaying appropriate arranged tumor-peptide-specific-T-cell receptors is very low and their activation by professional antigen-presenting cells, such as dendritic cells, is frequently hampered by insufficient costimulation resulting in peripheral tolerance. In addition, inhibitory immune circuits can impair an efficient antitumoral response of reactive T cells. It also has been demonstrated that large tumor burden can promote a state of immunosuppression that in turn can facilitate neoplastic progression. Moreover, tumor cells, which mostly are genetically instable, can gain rescue mechanisms which further impair immune surveillance by T cells. Herein, we summarize the data on how tumor cells evade T-cell immune surveillance with the focus on solid tumors and describe approaches to improve anticancer capacity of T cells

    Mutant IDH1 Differently Affects Redox State and Metabolism in Glial Cells of Normal and Tumor Origin

    Get PDF
    IDH1R132H (isocitrate dehydrogenase 1) mutations play a key role in the development of low-grade gliomas. IDH1wt converts isocitrate to α-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP+), whereas IDH1R132H uses α-ketoglutarate and NADPH to generate the oncometabolite 2-hydroxyglutarate (2-HG). While the effects of 2-HG have been the subject of intense research, the 2-HG independent effects of IDH1R132H are still ambiguous. The present study demonstrates that IDH1R132H expression but not 2-HG alone leads to significantly decreased tricarboxylic acid (TCA) cycle metabolites, reduced proliferation, and enhanced sensitivity to irradiation in both glioblastoma cells and astrocytes in vitro. Glioblastoma cells, but not astrocytes, showed decreased NADPH and NAD+ levels upon IDH1R132H transduction. However, in astrocytes IDH1R132H led to elevated expression of the NAD-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT). These effects were not 2-HG mediated. This suggests that IDH1R132H cells utilize NAD+ to restore NADP pools, which only astrocytes could compensate via induction of NAMPT. We found that the expression of NAMPT is lower in patient-derived IDH1-mutant glioma cells and xenografts compared to IDH1-wildtype models. The Cancer Genome Atlas (TCGA) data analysis confirmed lower NAMPT expression in IDH1-mutant versus IDH1-wildtype gliomas. We show that the IDH1 mutation directly affects the energy homeostasis and redox state in a cell-type dependent manner. Targeting the impairments in metabolism and redox state might open up new avenues for treating IDH1-mutant gliomas.publishedVersio

    A Novel Modular Antigen Delivery System for Immuno Targeting of Human 6-sulfo LacNAc-Positive Blood Dendritic Cells (SlanDCs)

    Get PDF
    Previously, we identified a major myeloid-derived proinflammatory subpopulation of human blood dendritic cells which we termed slanDCs (e.g. Schäkel et al. (2006) Immunity 24, 767-777). The slan epitope is an O-linked sugar modification (6-sulfo LacNAc, slan) of P-selectin glycoprotein ligand-1 (PSGL-1). As slanDCs can induce neoantigen-specific CD4+ T cells and tumor-reactive CD8+ cytotoxic T cells, they appear as promising targets for an in vivo delivery of antigens for vaccination. However, tools for delivery of antigens to slanDCs were not available until now. Moreover, it is unknown whether or not antigens delivered via the slan epitope can be taken up, properly processed and presented by slanDCs to T cells.Single chain fragment variables were prepared from presently available decavalent monoclonal anti-slan IgM antibodies but failed to bind to slanDCs. Therefore, a novel multivalent anti-slanDC scaffold was developed which consists of two components: (i) a single chain bispecific recombinant diabody (scBsDb) that is directed on the one hand to the slan epitope and on the other hand to a novel peptide epitope tag, and (ii) modular (antigen-containing) linker peptides that are flanked at both their termini with at least one peptide epitope tag. Delivery of a Tetanus Toxin-derived antigen to slanDCs via such a scBsDb/antigen scaffold allowed us to recall autologous Tetanus-specific memory T cells.In summary our data show that (i) the slan epitope can be used for delivery of antigens to this class of human-specific DCs, and (ii) antigens bound to the slan epitope can be taken up by slanDCs, processed and presented to T cells. Consequently, our novel modular scaffold system may be useful for the development of human vaccines

    The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation

    Get PDF
    The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome
    corecore