5 research outputs found

    High-Resolution Conformational Analysis of RGDechi-Derived Peptides Based on a Combination of NMR Spectroscopy and MD Simulations

    Get PDF
    The crucial role of integrin in pathological processes such as tumor progression and metastasis formation has inspired intense efforts to design novel pharmaceutical agents modulating integrin functions in order to provide new tools for potential therapies. In the past decade, we have investigated the biological proprieties of the chimeric peptide RGDechi, containing a cyclic RGD motif linked to an echistatin C-terminal fragment, able to specifically recognize αvβ3 without cross reacting with αvβ5 and αIIbβ3 integrin. Additionally, we have demonstrated using two RGDechi-derived peptides, called RGDechi1-14 and ψRGDechi, that chemical modifications introduced in the C-terminal part of the peptide alter or abolish the binding to the αvβ3 integrin. Here, to shed light on the structural and dynamical determinants involved in the integrin recognition mechanism, we investigate the effects of the chemical modifications by exploring the conformational space sampled by RGDechi1-14 and ψRGDechi using an integrated natural-abundance NMR/MD approach. Our data demonstrate that the flexibility of the RGD-containing cycle is driven by the echistatin C-terminal region of the RGDechi peptide through a coupling mechanism between the N- and C-terminal regions

    Melatonin MT1 receptors as a target for the psychopharmacology of bipolar disorder: a translational study

    Get PDF
    The treatment of bipolar disorder (BD) still remains a challenge. Melatonin (MLT), acting through its two receptors MT1 and MT2, plays a key role in regulating circadian rhythms which are dysfunctional in BD. Using a translational approach, we examined the implication and potential of MT1 receptors in the pathophysiology and psychopharmacology of BD. We employed a murine model of the manic phase of BD (Clock mutant (ClockΔ19) mice) to study the activation of MT1 receptors by UCM871, a selective partial agonist, in behavioral pharmacology tests and in-vivo electrophysiology. We then performed a high-resolution Nuclear Magnetic Resonance study on isolated membranes to characterize the molecular mechanism of interaction of UCM871. Finally, in a cohort of BD patients, we investigated the link between clinical measures of BD and genetic variants located in the MT1 receptor and CLOCK genes. We demonstrated that: 1) UCM871 can revert behavioral and electrophysiological abnormalities of ClockΔ19 mice; 2) UCM871 promotes the activation state of MT1 receptors; 3) there is a significant association between the number of severe manic episodes and MLT levels, depending on the genetic configuration of the MT1 rs2165666 variant. Overall, this work lends support to the potentiality of MT1 receptors as target for the treatment of BD

    A novel approach for studying receptor-ligand interactions on living cells surface by using NUS/T1ρ-NMR methodologies combined with computational techniques: The RGDechi15D-αvβ5 integrin complex

    No full text
    Structural investigations of receptor-ligand interactions on living cells surface by high-resolution Nuclear Magnetic Resonance (NMR) are problematic due to their short lifetime, which often prevents the acquisition of experiments longer than few hours. To overcome these limitations, we developed an on-cell NMR-based approach for exploring the molecular determinants driving the receptor-ligand recognition mechanism under native conditions. Our method relies on the combination of high-resolution structural and dynamics NMR data with Molecular Dynamics simulations and Molecular Docking studies. The key point of our strategy is the use of Non Uniform Sampling (NUS) and T1ρ-NMR techniques to collect atomic-resolution structural and dynamics information on the receptor-ligand interactions with living cells, that can be used as conformational constraints in computational studies. In fact, the application of these two NMR methodologies allows to record spectra with high S/N ratio and resolution within the lifetime of cells. In particular, 2D NUS [1H–1H] trNOESY spectra are used to explore the ligand conformational changes induced by receptor binding; whereas T1ρ-based experiments are applied to characterize the ligand binding epitope by defining two parameters: T1ρ Attenuation factor and T1ρ Binding Effect. This approach has been tested to characterize the molecular determinants regulating the recognition mechanism of αvβ5-integrin by a selective cyclic binder peptide named RGDechi15D. Our data demonstrate that the developed strategy represents an alternative in-cell NMR tool for studying, at atomic resolution, receptor-ligand recognition mechanism on living cells surface. Additionally, our application may be extremely useful for screening of the interaction profiling of drugs with their therapeutic targets in their native cellular environment
    corecore