53 research outputs found

    Delay in sexual maturation in perinatally HIV-infected youths is mediated by poor growth

    Get PDF
    OBJECTIVE: To evaluate the association between HIV infection and sexual maturation, and mediation of this association by HIV effects on growth. DESIGN: Pooled data were analyzed from two longitudinal cohort studies, the International Maternal Pediatric Adolescent AIDS Clinical Trials P219/219C Study (1993-2007) and the Pediatric HIV/AIDS Cohort Study Adolescent Master Protocol (2007-2015), including perinatally HIV-infected (PHIV) and HIV-exposed uninfected (PHEU) youths. METHODS: We evaluated age at sexual maturity among 2539 PHIV and PHEU adolescents based on annual physician-assessed pubertal staging measures. Interval-censored regression models were used to evaluate associations of HIV infection with age at maturity. Mediation analyses accounting for height and BMI Z-scores at specific ages were used to estimate direct and indirect effects of HIV infection on age at sexual maturity. RESULTS: Mean ages at sexual maturity for PHIV girls (n = 1032) were 15.5 years for both female breast and pubic hair and 15.9 and 15.8 years for PHIV boys (n = 1054) for genitalia and pubic hair, respectively. PHIV youths matured approximately 6 months later on average than PHEU (n = 221 girls and 232 boys), and this difference persisted after adjustment for race/ethnicity and birth cohort. BMI and height Z-scores mediated the association between HIV infection and later maturation in girls, accounting for up to 74% of the total HIV effect. Only height Z-scores mediated the effect of HIV on male age at maturity, accounting for up to 98% of the HIV effect. CONCLUSION: PHIV youths attain sexual maturity later on average than PHEU youths. Much of this difference may be attributable to deficient growth, suggesting directions for future interventions

    Bacterial Disease and Antimicrobial Susceptibility Patterns in HIV-Infected, Hospitalized Children: A Retrospective Cohort Study

    Get PDF
    The orginal version is available at www.plosone.orgBackground: Serious bacterial infections are a major source of morbidity and mortality in HIV-infected children. The spectrum of disease is wide, and responsible organisms vary according to setting. The use of antibiotic prophylaxis and the emergence of multi-drug resistant bacteria necessitate examination of responsible organisms and their antibiotic susceptibility. Methodology/Principal Findings: A retrospective cohort study of all HIV-positive pediatric admissions at an urban public sector hospital in Cape Town between January 2002 and June 2006 was conducted. Children between the ages of one month and nine years with laboratory confirmed HIV status, serious bacterial infection, and a hospital length of stay of 5 days or more, were eligible for inclusion. Organisms isolated from blood, urine, and cerebral spinal fluid cultures and their antimicrobial susceptibility were examined, and compared according to timing of isolation to distinguish nosocomial versus community-acquired. One hundred and forty-one children were identified (median age 1.2 years), 39% of whom were on antiretrovirals started before or during this hospitalization. Bacterial infections involved all organ systems, however pneumonia was most common (67%). S. pneumoniae and S. aureus were the most common gram positive and K. pneumoniae was the most common gram negative organism. K pneumoniae isolates were resistant to many first and second line antibiotics, and were all considered nosocomial. All S. aureus isolates were methicillin resistant, some of which were community-acquired. Conclusions/Significance: Bacterial infections are an important source of co-morbidity in HIV-infected children in resourcelimited settings. Clinicians should have a low threshold to initiate antibiotics in children requiring hospitalization. Broadspectrum antibiotics should be used judiciously. Clinicians caring for HIV-infected children should be cognizant of the most common organisms affecting such children, and of their local antimicrobial susceptibilities, when treating empirically for serious bacterial infections.Publisher's versio

    The epidemiology of adolescents living with perinatally acquired HIV: A cross-region global cohort analysis

    Get PDF
    Background Globally, the population of adolescents living with perinatally acquired HIV (APHs) continues to expand. In this study, we pooled data from observational pediatric HIV cohorts and cohort networks, allowing comparisons of adolescents with perinatally acquired HIV in “real-life” settings across multiple regions. We describe the geographic and temporal characteristics and mortality outcomes of APHs across multiple regions, including South America and the Caribbean, North America, Europe, sub-Saharan Africa, and South and Southeast Asia. Methods and findings Through the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER), individual retrospective longitudinal data from 12 cohort networks were pooled. All children infected with HIV who entered care before age 10 years, were not known to have horizontally acquired HIV, and were followed up beyond age 10 years were included in this analysis conducted from May 2016 to January 2017. Our primary analysis describes patient and treatment characteristics of APHs at key time points, including first HIV-associated clinic visit, antiretroviral therapy (ART) start, age 10 years, and last visit, and compares these characteristics by geographic region, country income group (CIG), and birth period. Our secondary analysis describes mortality, transfer out, and lost to follow-up (LTFU) as outcomes at age 15 years, using competing risk analysis. Among the 38,187 APHs included, 51% were female, 79% were from sub-Saharan Africa and 65% lived in low-income countries. APHs from 51 countries were included (Europe: 14 countries and 3,054 APHs; North America: 1 country and 1,032 APHs; South America and the Caribbean: 4 countries and 903 APHs; South and Southeast Asia: 7 countries and 2,902 APHs; sub-Saharan Africa, 25 countries and 30,296 APHs). Observation started as early as 1982 in Europe and 1996 in sub-Saharan Africa, and continued until at least 2014 in all regions. The median (interquartile range [IQR]) duration of adolescent follow-up was 3.1 (1.5–5.2) years for the total cohort and 6.4 (3.6–8.0) years in Europe, 3.7 (2.0–5.4) years in North America, 2.5 (1.2–4.4) years in South and Southeast Asia, 5.0 (2.7–7.5) years in South America and the Caribbean, and 2.1 (0.9–3.8) years in sub-Saharan Africa. Median (IQR) age at first visit differed substantially by region, ranging from 0.7 (0.3–2.1) years in North America to 7.1 (5.3–8.6) years in sub-Saharan Africa. The median age at ART start varied from 0.9 (0.4–2.6) years in North America to 7.9 (6.0–9.3) years in sub-Saharan Africa. The cumulative incidence estimates (95% confidence interval [CI]) at age 15 years for mortality, transfers out, and LTFU for all APHs were 2.6% (2.4%–2.8%), 15.6% (15.1%–16.0%), and 11.3% (10.9%–11.8%), respectively. Mortality was lowest in Europe (0.8% [0.5%–1.1%]) and highest in South America and the Caribbean (4.4% [3.1%–6.1%]). However, LTFU was lowest in South America and the Caribbean (4.8% [3.4%–6.7%]) and highest in sub-Saharan Africa (13.2% [12.6%–13.7%]). Study limitations include the high LTFU rate in sub-Saharan Africa, which could have affected the comparison of mortality across regions; inclusion of data only for APHs receiving ART from some countries; and unavailability of data from high-burden countries such as Nigeria. Conclusion To our knowledge, our study represents the largest multiregional epidemiological analysis of APHs. Despite probable under-ascertained mortality, mortality in APHs remains substantially higher in sub-Saharan Africa, South and Southeast Asia, and South America and the Caribbean than in Europe. Collaborations such as CIPHER enable us to monitor current global temporal trends in outcomes over time to inform appropriate policy responses

    Growth and CD4 patterns of adolescents living with perinatally acquired HIV worldwide, a CIPHER cohort collaboration analysis.

    Get PDF
    INTRODUCTION Adolescents living with HIV are subject to multiple co-morbidities, including growth retardation and immunodeficiency. We describe growth and CD4 evolution during adolescence using data from the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) global project. METHODS Data were collected between 1994 and 2015 from 11 CIPHER networks worldwide. Adolescents with perinatally acquired HIV infection (APH) who initiated antiretroviral therapy (ART) before age 10 years, with at least one height or CD4 count measurement while aged 10-17 years, were included. Growth was measured using height-for-age Z-scores (HAZ, stunting if <-2 SD, WHO growth charts). Linear mixed-effects models were used to study the evolution of each outcome between ages 10 and 17. For growth, sex-specific models with fractional polynomials were used to model non-linear relationships for age at ART initiation, HAZ at age 10 and time, defined as current age from 10 to 17 years of age. RESULTS A total of 20,939 and 19,557 APH were included for the growth and CD4 analyses, respectively. Half were females, two-thirds lived in East and Southern Africa, and median age at ART initiation ranged from 7 years in sub-Saharan African regions. At age 10, stunting ranged from 6% in North America and Europe to 39% in the Asia-Pacific; 19% overall had CD4 counts <500 cells/mm3 . Across adolescence, higher HAZ was observed in females and among those in high-income countries. APH with stunting at age 10 and those with late ART initiation (after age 5) had the largest HAZ gains during adolescence, but these gains were insufficient to catch-up with non-stunted, early ART-treated adolescents. From age 10 to 16 years, mean CD4 counts declined from 768 to 607 cells/mm3 . This decline was observed across all regions, in males and females. CONCLUSIONS Growth patterns during adolescence differed substantially by sex and region, while CD4 patterns were similar, with an observed CD4 decline that needs further investigation. Early diagnosis and timely initiation of treatment in early childhood to prevent growth retardation and immunodeficiency are critical to improving APH growth and CD4 outcomes by the time they reach adulthood

    Human Herpesviruses 6 and 7 and Central Nervous System Infection in Children

    Get PDF
    The role and frequency of human herpesviruses (HHV)-6 and -7 in central nervous system (CNS) diseases of children are unclear. Cerebrospinal fluid samples from 245 pediatric patients (median age 43 days), submitted for evaluations of possible sepsis or of neurologic symptoms, were tested for HHV-6 and HHV-7 DNA by polymerase chain reaction. HHV-6 DNA was found in 3 of 245 samples, and HHV-7 was found in 0 of 245 samples. The three patients with HHV-6 DNA were <2 months of age. HHV-6 was likely pathogenic in two patients in whom meningitis was diagnosed who lacked evidence of another microbiologic cause. HHV-6 and HHV-7 are uncommon causes of CNS infection in children. HHV-6 may occasionally cause meningitis in young infants

    Fungal Mastoiditis in immunocompromised children

    Full text link
    The immunocompromised host is subject to a variety of opportunistic infections. Mycotic infections, including invasive fungal sinusitis, are a dreaded complication in immune deficient children. Fungal mastoiditis has rarely been described in this population. Our experience with 2 cases of fungal mastoiditis in immunocompromised children is reviewed. Case histories describing aggressive medical management with and without surgical intervention and a review of the literature are presented.Fungal mastoiditis is a rare entity described in isolated case reports in the adult literature. It is seen almost entirely in immunocompromised patients, particularly those lacking cell-mediated immunity. The first case of Aspergillus mastoiditis was described in 1985.1 Reports of fungal mastoiditis have been primarily of patients with leukemia, and, more recently, of patients with acquired immunodeficiency syndrome.2,3 Using a computerized search of the MEDLINE database, we identified 1 report (in a non&ndash;English language journal) of fungal mastoiditis in a pediatric patient.4 We report 2 cases of fungal mastoiditis in immunosuppressed children
    corecore