137 research outputs found

    Identification of a putative anti-rheumatoid arthritis molecule by virtual screening

    Get PDF
    Purpose: To propose an improved chemical skeleton whose scaffolds could be used for the design of future thymidylate synthase (TS)-inhibitors against rheumatoid arthritis. Methods: The drug discovery platform, ‘MCULE’, was employed for inhibitor-screening. The ‘methotrexate-interaction site’ in the crystal (PDB ID 5X66) was used as a target. One ‘RO5 violation’ was permitted. A maximum of ‘10 rotatable bonds’ and ‘100 diverse molecules’ were also allowed in the protocol. The ‘threshold similarity cut off’ was 0.7. The input values describing the remaining parameters were kept as ‘default’. The ‘Open Babel Linear Fingerprint’ was used for the analyses of molecular descriptors, followed by ADME-check. Results: 4-(4-Methyl-1-piperazinyl)-2-phenyl[1]benzofuro[3,2-d]pyrimidine corresponding to the MCULE ID-7590816301-0-93 exhibited the overall best binding with TS. The free energy of binding was -8.6 kcal/mol. A total of 17 amino acid residues were significant for the binding interactions. Importantly, 9 residues were common to methotrexate binding. It satisfied pertinent ADME conditions. Conclusion: 4-(4-Methyl-1-piperazinyl)-2-phenyl[1]benzofuro[3,2-d]pyrimidinemay emerge as a potent seed molecule for TS-inhibitor design in the context of rheumatoid arthritis. It has satisfied pertinent ADME features. However, there is need for further wet laboratory validation. Keywords: Anti-rheumatoid arthritis, Inhibitor design, Methotrexate, Seed molecule, Thymidylate synthase, Virtual screenin

    Molecular interaction of 4-amino-N’-(benzoyloxy)-N-(2,4- dimethylphenyl)-1,2,5-oxadiazole-3-carboximidamide with the methotrexate binding site of human DHFR, and its implication in rheumatoid arthritis

    Get PDF
    Purpose: To identify an improved lead molecule for the human dihydrofolate reductase (DHFR) inhibition that ‘sits’ in the same binding cavity as methotrexate by high throughput computationalscreening.Methods: The 3-D structure of the DHFR binding site was examined using ‘CASTp3.0’. Structure based in silico screening of about 5 million drug candidates housed in the MCULE database was performed. The obtained molecule-hits were ranked in accordance with their VINA scores, made to pass through drug-likeness filters, ΔG cut-off criterion, toxicity-checker and finally ‘zero RO5 criterion’.Results: The ‘top molecule’, namely, 4-amino-N'-(benzoyloxy)-N-(2,4-dimethylphenyl)-1,2,5-oxadiazole- 3-carboximidamide, displayed robust binding with human DHFR through 21 amino acid residues (ΔG = - 9.6 kcal/mol) while 10 of these residues were the same as those displayed by ‘methotrexate binding interactions’. It passed through relevant drug screening filters including the ‘Toxicity Checker’.Conclusion: This research work describes the molecular interaction of human DHFR with an improved lead molecule named, 4-amino- N’-(benzoyloxy)-N-(2,4-dimethylphenyl)-1,2,5-oxadiazole-3- carboximidamide, with a ΔG of -9.6 kcal/mol, thus satisfying adequate ADME features for further in vitro and in vivo validation in the context of rheumatoid arthritis. Keywords: Dihydrofolate reductase, In silico screening, Methotrexate, Rheumatoid arthritis, DHF

    Characterization of Tomato Leaf Curl New Delhi Virus infecting cucurbits: Evidence for sap transmission in a host specific manner

    Get PDF
    Sponge gourd (Luffa cylindrica) is an economically important vegetable crop cultivated throughout India and this crop is severely affected by yellow mosaic disease caused by begomovirus. In this study, an attempt was made to transmit the begomovirus by sap. The causal agent was easily transmitted by sap to ridge gourd, sponge gourd and Nicotiana  benthamiana. Several factors affecting the efficient sap transmission of causal virus was identified. Use of two antioxidant (sodium sulphite and β-mercaptoethanol) and two abrasive (celite and corborundum) and application of inoculum on first true leaves and cotyledons by rubbing with cotton swab, dipped in inoculum resulted in significant higher rate of transmission. The sap inoculation protocol resulted in variable percentage of infected plants from different factors like buffer combinations, source of inoculum, age of inoculum, genotypes of test plants, and species of plants, temperature, seasons and organic materials. The most susceptible growth stage of ridge gourd plant to sap inoculation was seven days old seedlings that produced 100% infection. The sap transmission was confirmed by coat protein gene polymerase chain reaction (PCR) amplification, cloning and sequencing from infected plants. Sap transmission of begomovirus infecting luffa has not been reported previously in India.Keywords: Sap transmission, begomovirus, Tomato leaf curl New Delhi virus (ToLCNDV), cucurbitsAfrican Journal of Biotechnology Vol. 12(32), pp. 5000-500

    Pilot study of DNA extraction from archival unstained bone marrow slides: comparison of three rapid methods

    Get PDF
    DNA can be isolated from a variety of human sample sources including anti-coagulant whole blood, bloodstains, hairs, tissue samples and buccal epithelial cells. The purpose of this study was to compare yield and quality of DNA samples obtained with the use of three different methods. The ability of these procedures to provide DNA for polymerase chain reaction (PCR) amplification from archival unstained bone marrow slides was tested on 35 different patients’ slides. Boiling in distilled water (A), proteinase K/Tween 35 method coupled with simplified phenol/chloroform isoamyl alcohol protocol (B) and modified commercial nucleon extraction and purification protocol (C, Amersham Life Science) gave extraction efficiencies of 57, 74 and 100% respectively. Our results demonstrate that rough DNA extraction methods have decreased efficiencies compared to complete DNA extraction protocols and that the latter are required to ensure highly reproducible results from archival unstained bone marrow slides.Key words: DNA, polymerase chain reaction, bone marrow slides, reagent ki

    Paradise Lost and the Poetics of Encyclopedism

    Get PDF
    Table S4. Identified proteins in seminal plasma of infertile men with High ROS level

    Where do T cell subsets stand in SARS-CoV-2 infection: An update

    Get PDF
    An outbreak of coronavirus disease 2019 (COVID-19) emerged in China in December 2019 and spread so rapidly all around the globe. It\u27s continued and spreading more dangerously in India and Brazil with higher mortality rate. Understanding of the pathophysiology of COVID-19 depends on unraveling of interactional mechanism of SARS-CoV-2 and human immune response. The immune response is a complex process, which can be better understood by understanding the immunological response and pathological mechanisms of COVID-19, which will provide new treatments, increase treatment efficacy, and decrease mortality associated with the disease. In this review we present a amalgamate viewpoint based on the current available knowledge on COVID-19 which includes entry of the virus and multiplication of virus, its pathological effects on the cellular level, immunological reaction, systemic and organ presentation. T cells play a crucial role in controlling and clearing viral infections. Several studies have now shown that the severity of the COVID-19 disease is inversely correlated with the magnitude of the T cell response. Understanding SARS-CoV-2 T cell responses is of high interest because T cells are attractive vaccine targets and could help reduce COVID-19 severity. Even though there is a significant amount of literature regarding SARS-CoV-2, there are still very few studies focused on understanding the T cell response to this novel virus. Nevertheless, a majority of these studies focused on peripheral blood CD4+ and CD8+ T cells that were specific for viruses. The focus of this review is on different subtypes of T cell responses in COVID-19 patients, Th17, follicular helper T (TFH), regulatory T (Treg) cells, and less classical, invariant T cell populations, such as δγ T cells and mucosal-associated invariant T (MAIT) cells etc that could influence disease outcome

    Overlapping variants in the blood, tissues and cell lines for patients with intracranial meningiomas are predominant in stem cell-related genes

    Get PDF
    Objective: Bulk tissue genomic analysis of meningiomas identified common somatic mutations, however, it often excluded blood-related variants. In contrast, genomic characterisation of primary cell lines that can provide critical information regarding growth and proliferation, have been rare. In our work, we identified the variants that are present in the blood, tissues and corresponding cell lines that are likely to be predictive, tumorigenic and progressive. Method: Whole-exome sequencing was used to identify variants and distinguish related pathways that exist in 42 blood, tissues and corresponding cell lines (BTCs) samples for patients with intracranial meningiomas. Conventional sequencing was used for the confirmation of variants. Integrative analysis of the gene expression for the corresponding samples was utilised for further interpretations. Results: In total, 926 BTC variants were detected, implicating 845 genes. A pathway analysis of all BTC genes with damaging variants indicated the 'cell morphogenesis involved in differentiation' stem cell-related pathway to be the most frequently affected pathway. Concordantly, five stem cell-related genes, GPRIN2, ALDH3B2, ASPN, THSD7A and SIGLEC6, showed BTC variants in at least five of the patients. Variants that were heterozygous in the blood and homozygous in the tissues or the corresponding cell lines were rare (average: 1.3 +/- 0.3%), and included variants in the RUNX2 and CCDC114 genes. An analysis comparing the variants detected only in tumours with aggressive features indicated a total of 240 BTC genes, implicating the 'homophilic cell adhesion via plasma membrane adhesion molecules' pathway, and identifying the stem cell-related transcription coactivator NCOA3/AIB1/SRC3 as the most frequent BTC gene. Further analysis of the possible impact of the poly-Q mutation present in the NCOA3 gene indicated associated deregulation of 15 genes, including the up-regulation of the stem cell related SEMA3D gene and the angiogenesis related VEGFA gene. Conclusion: Stem cell-related pathways and genes showed high prevalence in the BTC variants, and novel variants in stem cell-related genes were identified for meningioma. These variants can potentially be used as predictive, tumorigenic and progressive biomarkers for meningioma

    Identification and characterisation of mutations associated with von Willebrand disease in a Turkish patient cohort

    Get PDF
    Several cohort studies have investigated the molecular basis of von Willebrand disease (VWD); however, these have mostly focused on European and North American populations. This study aimed to investigate mutation spectrum in 26 index cases (IC) from Turkey diagnosed with all three VWD types, the majority (73%) with parents who were knowingly related. IC were screened for mutations using multiplex ligation-dependent probe amplification and analysis of all von Willebrand factor gene (VWF) exons and exon/intron boundaries. Selected missense mutations were expressed in vitro. Candidate VWF mutations were identified in 25 of 26 IC and included propeptide missense mutations in four IC (two resulting in type 1 and two in recessive 2A), all influencing VWF expression in vitro. Four missense mutations, a nonsense mutation and a small in-frame insertion resulting in type 2A were also identified. Of 15 type 3 VWD IC, 13 were homozygous and two compound heterozygous for 14 candidate mutations predicted to result in lack of expression and two propeptide missense changes. Identification of intronic breakpoints of an exon 17–18 deletion suggested that the mutation resulted from non-homologous end joining. This study provides further insight into the pathogenesis of VWD in a population with a high degree of consanguineous partnerships

    Detection of FLT3 Oncogene Mutations in Acute Myeloid Leukemia Using Conformation Sensitive Gel Electrophoresis

    Get PDF
    FLT3 (fms-related tyrosine kinase 3) is a receptor tyrosine kinase class III that is expressed on by early hematopoietic progenitor cells and plays an important role in hematopoietic stem cell proliferation, differentiation and survival. FLT3 is also expressed on leukemia blasts in most cases of acute myeloid leukemia (AML). In order to determine the frequency of FLT3 oncogene mutations, we analyzed genomic DNA of adult de novo acute myeloid leukemia (AML). Polymerase chain reaction (PCR) and conformation-sensitive gel electrophoresis (CSGE) were used for FLT3 exons 11, 14, and 15, followed by direct DNA sequencing. Two different types of functionally important FLT 3 mutations have been identified. Those mutations were unique to patients with inv(16), t(15:17) or t(8;21) and comprised fifteen cases with internal tandem duplication (ITD) mutation in the juxtamembrane domain and eleven cases with point mutation (exon 20, Asp835Tyr). The high frequency of the flt3 proto-oncogene mutations in acute myeloid leukemia AML suggests a key role for the receptor function. The association of FLT3 mutations with chromosomal abnormalities invites speculation as to the link between these two changes in the pathogenesis of acute myeloid leukemiaAML. Furthermore, CSGE method has shown to be a rapid and sensitive screening method for detection of nucleotide alteration in FLT3 gene. Finally, this study reports, for the first time in Saudi Arabia, mutations in the human FLT3 gene in acute myeloid leukemia AML patients
    • …
    corecore