51 research outputs found

    A note on void ratio of fibre-reinforced soils

    Get PDF
    This technical note extends the concept of void ratio, presented traditionally in soil mechanics, for fibre-reinforced soils. Phase relationships related to the void ratio of fibre-reinforced soils are presented along with their definitions. A simple analytical model verified with experimental data for estimating the void ratio of fibre-reinforced soils is developed which can be used to express the compressibility of fibre-reinforced soils in geotechnical engineering applications. The results indicate that the void ratio of fibre-reinforced soils is dependent on the volume ratio of fibre-soil solid

    Current Status of Baricitinib as a Repurposed Therapy for COVID-19

    Get PDF
    The emergence of the COVID-19 pandemic has mandated the instant (re)search for potential drug candidates. In response to the unprecedented situation, it was recognized early that repurposing of available drugs in the market could timely save lives, by skipping the lengthy phases of preclinical and initial safety studies. BenevolentAI’s large knowledge graph repository of structured medical information suggested baricitinib, a Janus-associated kinase inhibitor, as a potential repurposed medicine with a dual mechanism; hindering SARS-CoV2 entry and combatting the cytokine storm; the leading cause of mortality in COVID-19. However, the recently-published Adaptive COVID-19 Treatment Trial-2 (ACTT-2) positioned baricitinib only in combination with remdesivir for treatment of a specific category of COVID-19 patients, whereas the drug is not recommended to be used alone except in clinical trials. The increased pace of data output in all life sciences fields has changed our understanding of data processing and manipulation. For the purpose of drug design, development, or repurposing, the integration of different disciplines of life sciences is highly recommended to achieve the ultimate benefit of using new technologies to mine BIG data, however, the final say remains to be concluded after the drug is used in clinical practice. This review demonstrates different bioinformatics, chemical, pharmacological, and clinical aspects of baricitinib to highlight the repurposing journey of the drug and evaluates its placement in the current guidelines for COVID-19 treatment

    Performance evaluation of five ELISA kits for detecting anti-SARS-COV-2 IgG antibodies

    Get PDF
    Objectives: To evaluate and compare the performances of five commercial ELISA assays (EDI, AnshLabs, Dia.Pro, NovaTec, and Lionex) for detecting anti-SARS-CoV-2 IgG. / Methods: Seventy negative control samples (collected before the COVID-19 pandemic) and samples from 101 RT-PCR-confirmed SARS-CoV-2 patients (collected at different time points from symptom onset: ≤7, 8–14 and >14 days) were used to compare the sensitivity, specificity, agreement, and positive and negative predictive values of each assay with RT-PCR. A concordance assessment between the five assays was also conducted. Cross-reactivity with other HCoV, non-HCoV respiratory viruses, non-respiratory viruses, and nuclear antigens was investigated. / Results: Lionex showed the highest specificity (98.6%; 95% CI 92.3–99.8), followed by EDI and Dia.Pro (97.1%; 95% CI 90.2–99.2), NovaTec (85.7%; 95% CI 75.7–92.1), then AnshLabs (75.7%; 95% CI 64.5–84.2). All ELISA kits cross-reacted with one anti-MERS IgG-positive sample, except Lionex. The sensitivity was low during the early stages of the disease but improved over time. After 14 days from symptom onset, Lionex and NovaTec showed the highest sensitivity at 87.9% (95% CI 72.7–95.2) and 86.4% (95% CI 78.5–91.7), respectively. The agreement with RT-PCR results based on Cohen's kappa was as follows: Lionex (0.89) > NovaTec (0.70) > Dia.Pro (0.69) > AnshLabs (0.63) > EDI (0.55). / Conclusion: The Lionex and NovaLisa IgG ELISA kits, demonstrated the best overall performance

    Refurbishment of public housing villas in the United Arab Emirates (UAE): energy and economic impact

    Get PDF
    © 2016, Springer Science+Business Media Dordrecht. This study aims at assessing the technical and economic benefits of refurbishing existing public housing villas in the UAE. Four representative federal public housing villas built between 1980s and 2010s were modeled and analyzed. The Integrated Environmental Solutions-Virtual Environment (IES-VE) energy modeling software was used to estimate the energy consumption and savings due to different refurbishment configurations applied to the villas. The refurbishment technical configurations were based on the UAE’s Estidama green buildings sustainability assessment system. The refurbishment configurations include upgrading three elements: the wall and roof insulation as well as replacing the glazing. The annual electricity savings results indicated that the most cost-efficient refurbishment strategy is upgrading of wall insulation (savings up to 20.8 %) followed by upgrading the roof’s insulation (savings up to 11.6 %) and lastly replacing the glazing (savings up to 3.2 %). When all three elements were refurbished simultaneously, savings up to 36.7 % were achieved (villa model 670). The savings translated to CO2 emission reduction of 22.6 t/year. The simple and discounted payback periods for the different configurations tested ranged between 8 and 28 and 10 and 50 years, respectively

    Detection of Antinuclear Antibodies Targeting Intracellular Signal Transduction, Metabolism, Apoptotic Processes and Cell Death in Critical COVID-19 Patients

    Get PDF
    Background and Objectives: The heterogeneity of the coronavirus disease of 2019 (COVID-19) lies within its diverse symptoms and severity, ranging from mild to lethal. Acute respiratory distress syndrome (ARDS) is a leading cause of mortality in COVID-19 patients, characterized by a hyper cytokine storm. Autoimmunity is proposed to occur as a result of COVID-19, given the high similarity of the immune responses observed in COVID-19 and autoimmune diseases. Here, we investigate the level of autoimmune antibodies in COVID-19 patients with different severities. Results: Initial screening for antinuclear antibodies (ANA) IgG using ELISA revealed that 1.58% (2/126) and 4% (5/126) of intensive care unit (ICU) COVID-19 cases expressed strong and moderate ANA levels, respectively. An additional sample was positive with immunofluorescence assays (IFA) screening. However, all the non-ICU cases (n=273) were ANA negative using both assays. Samples positive for ANA were further confirmed with large-scale autoantibody screening by phage immunoprecipitation-sequencing (PhIP-Seq). The majority of the ANA-positive samples showed "speckled" ANA pattern by microscopy and revealed autoantibody specificities that targeted proteins involved in intracellular signal transduction, metabolism, apoptotic processes, and cell death by PhIP-Seq; further denoting reactivity to nuclear and cytoplasmic antigens. Conclusion: Our results further support the notion of routine screening for autoimmune responses in COVID-19 patients, which might help improve disease prognosis and patient management. Further, results provide compelling evidence that ANA-positive individuals should be excluded from being donors for convalescent plasma therapy in the context of COVID-19.This study was supported by funds from QNRF, grant # NPRP11S-1212-170092

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore