91 research outputs found

    Experimenting with the king of France: Topics, verifiability and definite descriptions

    Get PDF
    International audienceDefinite descriptions with reference failure have been argued to give rise to different truth-value intuitions depending on the local linguistic context in which they appear. We conducted an experiment to investigate these alleged differences, thereby contributing new data to the debate. We have found that pragmatic strategies dependent on verification and topicalisation, suggested in the context of trivalent/partial theories, indeed play a role in people's subjective judgments. We discuss the consequences of these findings for all major approaches to definite descriptions (i.e. Russellian, Strawsonian, pragmatic). Finally, we offer a discussion of the relative contribution of verificational and topicality effects on truth values, reaching the conclusion that verification is primarily relevant and topicality is dependent on that. We thus support von Fintel's (2004) position on the primacy of verification, but not his dismissal of topicality as a facto

    Triggering verbal presuppositions

    Get PDF
    This paper offers a predictive mechanism to derive the presuppositions of verbs. The starting point is the intuition, dating back at least to Stalnaker (1974), that the information conveyed by a sentence that is in some sense independent from its main point is presupposed. The contribution of this paper is to spell out a mechanism for deciding what will become the main point of the sentence and how to calculate independence. It is proposed that this can be calculated by making reference to event times. As a very rough approximation, the main point of an utterance is what (in a sense to be defined) has to be about the event time of the matrix predicate and the information that the sentence conveys but is not (or does not have to be) about the event time of the matrix predicate is presupposed. The notion of aboutness used to calculate independence is based on Demolombe and Farinas del Cerro (2000)

    Known allosteric proteins have central roles in genetic disease

    Full text link
    Allostery is a form of protein regulation, where ligands that bind sites located apart from the active site can modify the activity of the protein. The molecular mechanisms of allostery have been extensively studied, because allosteric sites are less conserved than active sites, and drugs targeting them are more specific than drugs binding the active sites. Here we quantify the importance of allostery in genetic disease. We show that 1) known allosteric proteins are central in disease networks, and contribute to genetic disease and comorbidities much more than non-allosteric proteins, in many major disease types like hematopoietic diseases, cardiovascular diseases, cancers, diabetes, or diseases of the central nervous system. 2) variants from cancer genome-wide association studies are enriched near allosteric proteins, indicating their importance to polygenic traits; and 3) the importance of allosteric proteins in disease is due, at least partly, to their central positions in protein-protein interaction networks, and probably not due to their dynamical properties

    Analysis of the largest tandemly repeated DNA families in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tandemly Repeated DNA represents a large portion of the human genome, and accounts for a significant amount of copy number variation. Here we present a genome wide analysis of the largest tandem repeats found in the human genome sequence.</p> <p>Results</p> <p>Using Tandem Repeats Finder (TRF), tandem repeat arrays greater than 10 kb in total size were identified, and classified into simple sequence e.g. GAATG, classical satellites e.g. alpha satellite DNA, and locus specific VNTR arrays. Analysis of these large sequenced regions revealed that several "simple sequence" arrays actually showed complex domain and/or higher order repeat organization. Using additional methods, we further identified a total of 96 additional arrays with tandem repeat units greater than 2 kb (the detection limit of TRF), 53 of which contained genes or repeated exons. The overall size of an array of tandem 12 kb repeats which spanned a gap on chromosome 8 was found to be 600 kb to 1.7 Mbp in size, representing one of the largest non-centromeric arrays characterized. Several novel megasatellite tandem DNA families were observed that are characterized by repeating patterns of interspersed transposable elements that have expanded presumably by unequal crossing over. One of these families is found on 11 different chromosomes in >25 arrays, and represents one of the largest most widespread megasatellite DNA families.</p> <p>Conclusion</p> <p>This study represents the most comprehensive genome wide analysis of large tandem repeats in the human genome, and will serve as an important resource towards understanding the organization and copy number variation of these complex DNA families.</p

    Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres

    Get PDF
    The distribution of centromeric chromatin-associated proteins across human neocentromeric DNA shows that this chromatin consists of several CENP-A-containing sub-domains

    The role of LINEs and CpG islands in dosage compensation on the chicken Z chromosome

    Get PDF
    Most avian Z genes are expressed more highly in ZZ males than ZW females, suggesting that chromosome-wide mechanisms of dosage compensation have not evolved. Nevertheless, a small percentage of Z genes are expressed at similar levels in males and females, an indication that a yet unidentified mechanism compensates for the sex difference in copy number. Primary DNA sequences are thought to have a role in determining chromosome gene inactivation status on the mammalian X chromosome. However, it is currently unknown whether primary DNA sequences also mediate chicken Z gene compensation status. Using a combination of chicken DNA sequences and Z gene compensation profiles of 310 genes, we explored the relationship between Z gene compensation status and primary DNA sequence features. Statistical analysis of different Z chromosomal features revealed that long interspersed nuclear elements (LINEs) and CpG islands are enriched on the Z chromosome compared with 329 other DNA features. Linear support vector machine (SVM) classifiers, using primary DNA sequences, correctly predict the Z compensation status for >60% of all Z-linked genes. CpG islands appear to be the most accurate classifier and alone can correctly predict compensation of 63% of Z genes. We also show that LINE CR1 elements are enriched 2.7-fold on the chicken Z chromosome compared with autosomes and that chicken chromosomal length is highly correlated with percentage LINE content. However, the position of LINE elements is not significantly associated with dosage compensation status of Z genes. We also find a trend for a higher proportion of CpG islands in the region of the Z chromosome with the fewest dosage-compensated genes compared with the region containing the greatest concentration of compensated genes. Comparison between chicken and platypus genomes shows that LINE elements are not enriched on sex chromosomes in platypus, indicating that LINE accumulation is not a feature of all sex chromosomes. Our results suggest that CpG islands are not randomly distributed on the Z chromosome and may influence Z gene dosage compensation status

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements

    Get PDF
    Throughout evolution, eukaryotic genomes have been invaded by transposable elements (TEs). Little is known about the factors leading to genomic proliferation of TEs, their preferred integration sites and the molecular mechanisms underlying their insertion. We analyzed hundreds of thousands nested TEs in the human genome, i.e. insertions of TEs into existing ones. We first discovered that most TEs insert within specific ‘hotspots’ along the targeted TE. In particular, retrotransposed Alu elements contain a non-canonical single nucleotide hotspot for insertion of other Alu sequences. We next devised a method for identification of integration sequence motifs of inserted TEs that are conserved within the targeted TEs. This method revealed novel sequences motifs characterizing insertions of various important TE families: Alu, hAT, ERV1 and MaLR. Finally, we performed a global assessment to determine the extent to which young TEs tend to nest within older transposed elements and identified a 4-fold higher tendency of TEs to insert into existing TEs than to insert within non-TE intergenic regions. Our analysis demonstrates that TEs are highly biased to insert within certain TEs, in specific orientations and within specific targeted TE positions. TE nesting events also reveal new characteristics of the molecular mechanisms underlying transposition

    Dietary Essential Amino Acids Affect the Reproduction of the Keystone Herbivore Daphnia pulex

    Get PDF
    Recent studies have indicated that nitrogen availability can be an important determinant of primary production in freshwater lakes and that herbivore growth can be limited by low dietary nitrogen availability. Furthermore, a lack of specific essential nitrogenous biochemicals (such as essential amino acids) might be another important constraint on the fitness of consumers. This might be of particular importance for cladoceran zooplankton, which can switch between two alternative reproductive strategies – the production of subitaneously developing and resting eggs. Here, we hypothesize that both the somatic growth and the type of reproduction of the aquatic keystone herbivore Daphnia is limited by the availability of specific essential amino acids in the diet. In laboratory experiments, we investigated this hypothesis by feeding a high quality phytoplankton organism (Cryptomonas) and a green alga of moderate nutritional quality (Chlamydomonas) to a clone of Daphnia pulex with and without the addition of essential amino acids. The somatic growth of D. pulex differed between the algae of different nutritional quality, but not dependent on the addition of dissolved amino acids. However, in reproduction experiments, where moderate crowding conditions at saturating food quantities were applied, addition of the essential amino acids arginine and histidine (but not lysine and threonine) increased the total number and the developmental stage of subitaneous eggs. While D. pulex did not produce resting eggs on Cryptomonas, relatively high numbers of resting eggs were released on Chlamydomonas. When arginine and histidine were added to the green algal diet, the production of resting eggs was effectively suppressed. This demonstrates the high, but previously overlooked importance of single essential amino acids for the reproductive strategy of the aquatic keystone herbivore Daphnia
    • …
    corecore