7,968 research outputs found

    The centrifugal force reversal and X-ray bursts

    Full text link
    Heyl (2000) made an interesting suggestion that the observed shifts in QPO frequency in type I X-ray bursts could be influenced by the same geometrical effect of strong gravity as the one that causes centrifugal force reversal discovered by Abramowicz and Lasota (1974). However, his main result contains a sign error. Here we derive the correct formula and conclude that constraints on the M(R) relation for neutron stars deduced from the rotational-modulation model of QPO frequency shifts are of no practical interest because the correct formula implies a weak condition R* > 1.3 Rs, where Rs is the Schwarzschild radius. We also argue against the relevance of the rotational-modulation model to the observed frequency modulations.Comment: 3 pages, Minor revisions, A&A Letters, in pres

    Optical reference geometry of the Kerr-Newman spacetimes

    Full text link
    Properties of the optical reference geometry related to Kerr-Newman black-hole and naked-singularity spacetimes are illustrated using embedding diagrams of their equatorial plane. Among all inertial forces defined in the framework of the optical geometry, just the centrifugal force plays a fundamental role in connection to the embedding diagrams because it changes sign at the turning points of the diagrams. The limits of embeddability are given, and it is established which of the photon circular orbits hosted the by Kerr-Newman spacetimes appear in the embeddable regions. Some typical embedding diagrams are constructed, and the Kerr-Newman backgrounds are classified according to the number of embeddable regions of the optical geometry as well as the number of their turning points. Embedding diagrams are closely related to the notion of the radius of gyration which is useful for analyzing fluid rotating in strong gravitational fields.Comment: 28 pages, 17 figure

    Of NBOs and kHz QPOs: a low-frequency modulation in resonant oscillations of relativistic accretion disks

    Full text link
    The origin of quasi periodic modulations of flux in the kilohertz range (kHz QPOs), observed in low-mass X-ray binaries, is usually assumed to be physically distinct from that of the ``normal branch oscillations'' (NBOs) in the Z-sources. We show that a low-frequency modulation of the kHz QPOs is a natural consequence of the non-linear relativistic resonance suggested previously to explain the properties of the high-frequency twin peaks. The theoretical results discussed here are reminiscent of the 6 Hz variations of frequency and amplitude of the kHz QPOs reported by Yu, van der Klis and Jonker (2001).Comment: Accepted for publication in PASJ; 4 pages, 1 figur

    Leaving the ISCO: the inner edge of a black-hole accretion disk at various luminosities

    Get PDF
    The "radiation inner edge" of an accretion disk is defined as the inner boundary of the region from which most of the luminosity emerges. Similarly, the "reflection edge" is the smallest radius capable of producing a significant X-ray reflection of the fluorescent iron line. For black hole accretion disks with very sub-Eddington luminosities these and all other "inner edges" locate at ISCO. Thus, in this case, one may rightly consider ISCO as the unique inner edge of the black hole accretion disk. However, even for moderate luminosities, there is no such unique inner edge as differently defined edges locate at different places. Several of them are significantly closer to the black hole than ISCO. The differences grow with the increasing luminosity. For nearly Eddington luminosities, they are so huge that the notion of the inner edge losses all practical significance.Comment: 12 pages, 15 figures, submitted to A&

    Mass of a Black Hole Firewall

    Full text link
    Quantum entanglement of Hawking radiation has been supposed to give rise to a Planck density "firewall" near the event horizon of old black holes. We show that Planck density firewalls are excluded by Einstein's equations for black holes of mass exceeding the Planck mass. We find an upper limit of 1/(8πM)1/(8\pi M) to the surface density of a firewall in a Schwarzschild black hole of mass MM, translating for astrophysical black holes into a firewall density smaller than Planck density by more than 30 orders of magnitude. A strict upper limit on the firewall density is given by the Planck density times the ratio MPl/(8πM)M_{\rm Pl}/(8\pi M).Comment: 6 pages, version published in Phys. Rev. Let

    Dynamics of thick discs around Schwarzschild-de Sitter black holes

    Get PDF
    We consider the effects of a cosmological constant on the dynamics of constant angular momentum discs orbiting Schwarzschild-de Sitter black holes. The motivation behind this study is to investigate whether the presence of a radial force contrasting the black hole's gravitational attraction can influence the occurrence of the runaway instability, a robust feature of the dynamics of constant angular momentum tori in Schwarzschild and Kerr spacetimes. In addition to the inner cusp near the black hole horizon through which matter can accrete onto the black hole, in fact, a positive cosmological constant introduces also an outer cusp through which matter can leave the torus without accreting onto the black hole. To assess the impact of this outflow on the development of the instability we have performed time-dependent and axisymmetric hydrodynamical simulations of equilibrium initial configurations in a sequence of background spacetimes of Schwarzschild-de Sitter black holes with increasing masses. The simulations have been performed with an unrealistic value for the cosmological constant which, however, yields sufficiently small discs to be resolved accurately on numerical grids and thus provides a first qualitative picture of the dynamics. The calculations, carried out for a wide range of initial conditions, show that the mass-loss from the outer cusp can have a considerable impact on the instability, with the latter being rapidly suppressed if the outflow is large enough.Comment: 12 pages; A&A, in pres

    Centrifugal Force and Ellipticity behaviour of a slowly rotating ultra compact object

    Get PDF
    Using the optical reference geometry approach, we have derived in the following, a general expression for the ellipticity of a slowly rotating fluid configuration using Newtonian force balance equation in the conformally projected absolute 3-space, in the realm of general relativity. Further with the help of Hartle-Thorne (H-T) metric for a slowly rotating compact object, we have evaluated the centrifugal force acting on a fluid element and also evaluated the ellipticity and found that the centrifugal reversal occurs at around R/Rs1.45R/R_s \approx 1.45, and the ellipticity maximum at around R/Rs2.75R/R_s \approx 2.75. The result has been compared with that of Chandrasekhar and Miller which was obtained in the full 4-spacetime formalism

    Extracting black-hole rotational energy: The generalized Penrose process

    Full text link
    In the case involving particles the necessary and sufficient condition for the Penrose process to extract energy from a rotating black hole is absorption of particles with negative energies and angular momenta. No torque at the black-hole horizon occurs. In this article we consider the case of arbitrary fields or matter described by an unspecified, general energy-momentum tensor TμνT_{\mu \nu} and show that the necessary and sufficient condition for extraction of a black hole's rotational energy is analogous to that in the mechanical Penrose process: absorption of negative energy and negative angular momentum. We also show that a necessary condition for the Penrose process to occur is for the Noether current (the conserved energy-momentum density vector) to be spacelike or past directed (timelike or null) on some part of the horizon. In the particle case, our general criterion for the occurrence of a Penrose process reproduces the standard result. In the case of relativistic jet-producing "magnetically arrested disks" we show that the negative energy and angular-momentum absorption condition is obeyed when the Blandford-Znajek mechanism is at work, and hence the high energy extraction efficiency up to 300%\sim 300\% found in recent numerical simulations of such accretion flows results from tapping the black hole's rotational energy through the Penrose process. We show how black-hole rotational energy extraction works in this case by describing the Penrose process in terms of the Noether current.Comment: 24 pages, 14 figures, version published in Phys. Rev.

    Photon capture cones and embedding diagrams of the Ernst spacetime

    Full text link
    The differences between the character of the Schwarzschild and Ernst spacetimes are illustrated by comparing the photon capture cones, and the embedding diagrams of the t=constt=\mathrm{const} sections of the equatorial planes of both the ordinary and optical reference geometry of these spacetimes. The non-flat asymptotic character of the Ernst spacetime reflects itself in two manifest facts: the escape photon cones correspond to purely outward radial direction, and the embedding diagrams of both the ordinary and optical geometry shrink to zero radius asymptotically. Using the properties of the embedding diagrams, regions of these spacetimes which could have similar character are estimated, and it is argued that they can exist for the Ernst spacetimes with a sufficiently low strength of the magnetic field.Comment: 12 pages, 7 figure
    corecore