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ABSTRACT

The “radiation inner edge” of an accretion disk is defined as the inner boundary of the region from which most of the luminosity
emerges. Similarly, the “reflection edge” is the smallest radius capable of producing a significant X-ray reflection of the fluorescent
iron line. For black hole accretion disks with very sub-Eddington luminosities these and all other “inner edges” coexist at the innermost
stable circular orbit (ISCO). Thus, in this case, one may rightly consider ISCO as the unique inner edge of the black hole accretion
disk. However, even at moderate luminosities, there is no such unique inner edge because differently defined edges are located at
different places. Several of them are significantly closer to the black hole than ISCO. These differences grow with the increasing
luminosity. For nearly Eddington luminosities, they are so huge that the notion of the inner edge loses all practical significance.
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1. Introduction

Accretion flows onto black holes must change character before
matter crosses the event horizon, for two reasons. First, mat-
ter must cross the black-hole surface at the speed of light as
measured by a local inertial observer (see e.g., Gourgoulhon &
Jaramillo 2006), so that if the flow is subsonic far away from the
black-hole (in practice it is always the case) it will have to cross
the sound barrier (well) before reaching the horizon. This is the
property of all realistic flows independent of their angular mo-
mentum. This sonic surface can be considered as the inner edge
of the accretion flow.

The second reason is related to angular momentum. Far from
the hole many (most probably most) rotating accretion flows
adapt the Keplerian angular momentum profile. Because of the
existence of the innermost stable circular orbit (ISCO), these
flows must stop to be Keplerian there. At high accretion rates
when pressure gradients become important, the flow may extend
below the ISCO but the presence of the innermost bound circular
orbit (IBCO) defines another limit to a circular flow (the absolute
limit being given by the circular photon orbit, the CPO). These
critical circular orbits provide another possible definition of the
inner edge of the flow, in this case of an accretion disk.

The question is: what is the relation between the accretion
flow edges? In the case of geometrically thin disks the sonic and

Keplerian edges coincide and one can define the ISCO as the
inner edge of these disks. Paczyński (2000) showed rigorously
that independent of e.g., viscosity mechanism and the presence
of magnetic fields, the ISCO is the universal inner disk’s edge
for not too-high viscosities. The case of thin disks is therefore
settled1.

However, this is not the case for non-thin accretion disks,
i.e., of medium and high luminosities. The problem of defining
the inner edge of an accretion disk is not just a formal exercise.
Afshordi & Paczyński (2003) explored several reasons which
made discussing the precise location of inner edge r = rin of
the black hole accretion disks an interesting and important issue.
One of them was,

Theory of accretion disks is several decades old. With time
ever more sophisticated and more diverse models of ac-
cretion onto black holes have been introduced. However,
when it comes to modeling disk spectra, conventional steady
state, geometrically thin-disk models are still used, adopting

1 Penna et al. (2010) studied the effects of magnetic fields on thin
accretion disk (the disk thickness H/r <∼ 0.07, which corresponds to
L <∼ 0.2 LEdd). They found that to within a few percent the magnetized
disks are consistent with the Novikov & Thorne (1973) model, in which
the inner edge coincides with the ISCO.
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the classical “no torque” inner boundary condition at the
marginally stable orbit.

The clearest illustration of this is the state-of-art work on mea-
suring the black hole spin a in the microquasar GRS 1915+105
by fitting its observed “thermal state” spectra to those calcu-
lated (e.g. McClintock et al. 2006; Middleton et al. 2009). These
works use a general relativistic version of the classical Shakura-
Sunyaev thin accretion disk model developed by Novikov &
Thorne (1973). The Novikov-Thorne model assumes that the in-
ner edge of the disk rin ≡ rISCO is also the innermost boundary
of the radiating region.

Because the black hole mass of GRS 1915+105 is known
and therefore fixed (M0 = 14 M� ± 4 M�), the surface area A
of the radiating region, calculated in the model, depends only on
the black hole unknown spin, a∗ (a∗ = Jc/GM2 with J being the
total angular momentum of the black hole). In the thermal state,
the disk spectrum is close to that of a sum of black body con-
tributions from different radial locations. Its shape is determined
by the radial distribution of temperature, which in the Novikov-
Thorne model depends on the spin, T = T (r, a∗). The total ra-
diation power L is determined by the “averaged” temperature
T0 = T0(a∗) and the surface area A = A(a∗) of the radiating re-
gion, L = σT 4

0 A. By calculating the spectral shape and power for
different a∗ in the Novikov-Thorne model, one may find the best-
fit estimates of the spin-dependent temperature and area. This
is just the main idea of the spin estimate; details of the fitting
are far more complex (see McClintock et al. 2006; Davis et al.
2005, Staub et al., in prep.) and include, for example, a heuristic
way of treating a contribution of scattering in accretion disk at-
mosphere (i.e., the “hardening factor”). Results obtained in this
way by McClintock et al. (2006) for GRS 1915+105 showed
that a∗ = 0.99 for the luminosity range L < 0.2 LEdd. However,
for L > 0.2 LEdd, the spin estimated by McClintock et al. (2006)
was much lower, a∗ ≈ 0.8. The inconsistent spin estimates at dif-
ferent luminosities may indicate that some assumptions adopted
by the Novikov-Thorne model are wrong at high luminosities.

This is not a surprise, because there are several physical ef-
fects known to be important at high luminosities, that are ignored
in the classical Shakura-Sunyaev and Novikov-Thorne thin ac-
cretion disk models. These effects are properly included in the
slim2 accretion disks models, introduced by Abramowicz et al.
(1988). Advection is perhaps the most well-known of these “slim
disk effects”, but in the present context the significant stress
caused by the radial pressure gradient (for thin disks dP/dr ≈ 0)
is equally important. The stress firmly retains matter well inside
ISCO and as a result of this, at high luminosities the edge of the
plunge-in region may be considerably closer to the black hole
than the ISCO3.

Slim disks are assumed to be stationary and axially sym-
metric. They are described by vertically integrated Navier-
Stokes hydrodynamical equations; no magnetic fields are con-
sidered. The effective viscosity, assumed to be generated by
the MHD turbulence (Balbus & Hawley 1991), is described by
the “αP” Shakura-Sunyaev ansatz. We neglect additional effects
connected to turbulent components of magnetic fields, winds, or
disk corona, basing our study on conservation laws alone.

2 The names thin and slim refer to the dimensionless vertical geomet-
rical thickness, h = H/r. For thin disks, it must be h � 1, while for slim
disks a weaker condition h < 1 holds.
3 Matter may also be retained well inside the ISCO by magnetic
stresses, as pointed out by many authors; see e.g. a semi-analytic model
by Narayan et al. (2003), or MHD numerical simulations by Noble et al.
(2010), and references quoted in these papers.

Fig. 1. This figure illustrates a few of the most well-known analytic
and semi-analytic solutions of the stationary black hole accretion disks.
Their location in the parameter space approximately corresponds to vis-
cosity α = 0.1 and radius r = 20 M.

Figure 1 shows the slim disk location with respect to
other analytic and semi-analytic disk models4, in the parameter
space [τ, h, ṁ] described by the vertical optical depth τ, dimen-
sionless vertical thickness h = H/r, and dimensionless accretion
rate ṁ = Ṁ/ṀEdd, where ṀEdd = 16 LEdd/c2 is the critical ac-
cretion rate approximately corresponding to the Eddington lu-
minosity (LEdd = 1038 M/M� erg s−1) in case of a disk around a
non-rotating black hole5.

In this paper, we discuss for the first time in detail the
properties of the inner edge of the slim accretion disks around
rotating black holes, using models similar to those calculated
by Sądowski (2009)6. For convenience, we briefly recall the
slim disk basic equations in Appendix A. In Sect. 2, we list
six possible definitions of the inner edge. These definitions re-
flect different (but partially overlapping) physical meanings and
different practical astrophysical applications. In the subsequent
Sects. 3−8, we calculate the slim disk locations of these six inner
edges, and discuss their astrophysical relevances. Some of the re-
sults presented here were found previously both by ourselves and
other authors in a different context of Polish doughnuts (i.e. thick
accretion disks; see e.g. the short review by Paczyński 1998); we
refer also to Paczyński (2000) and Afshordi & Paczyński (2003).

2. Definitions of the inner edge

Krolik & Hawley (2002) proposed several “empirical” defini-
tions of the inner edge, each serving a different practical purpose
(see also the follow-up investigation by Beckwith et al. 2002).

4 For detailed reviews of these solutions see,
http://www.scholarpedia.org/article/Accretion_discs or
Kato et al. (2008).
5 Two points about notation: (i) many authors use a different defini-
tion, ṀEdd = LEdd/c2. (ii) In this paper, we often use the c = 1 = G
convention in which M = rG = GM/c2.
6 At http://users.camk.edu.pl/as/slimdisks we provide a
very detailed database for these solutions, which covers the whole pa-
rameter space relevant to microquasars and AGN.
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Fig. 2. An illustrative visualisation of the Roche lobe overflow. The leftmost panel schematically presents disk angular momentum profile and
its relation to the Keplerian distribution. The middle panel shows the equipotential surfaces. The dotted region denotes the volume filled with
accreting fluid. The rightmost panel presents the potential barrier at the equatorial plane (z = 0) and the potential of the fluid (WS ) overflowing the
barrier. The figure is taken from http://www.scholarpedia.org/article/Accretion_discs.

We add to these a few more definitions. The list of the inner
edges considered in this paper consists of7,

[1] The potential spout edge rin = rpot, where the effective poten-
tial forms a self-crossing Roche lobe, and accretion is gov-
erned by the Roche lobe overflow.

[2] The sonic edge rin = rson, where the transition from subsonic
to transonic accretion occurs. Hydrodynamical disturbances
do not propagate upstream a supersonic flow, and therefore
the subsonic part of the flow is “causally” disconnected from
the supersonic part.

[3] The variability edge rin = rvar, the smallest radius where or-
bital motion of coherent spots may produce quasi-periodic
variability.

[4] The stress edge rin = rstr, the outermost radius where the
Reynolds stress is small, and plunging matter has no dynam-
ical contact with the outer accretion flow.

[5] The radiation edge rin = rrad, the innermost place from which
significant luminosity emerges.

[6] The reflection edge rin = rref , the smallest radius capable of
producing significant fluorescent iron line.

In the next six sections, we discuss these six edges one by one.

3. The potential spout edge

The idea of the “relativistic Roche lobe overflow” governing ac-
cretion close to the black hole was first explained by Paczyński
(see Kozłowski et al. 1978). It was later explored in detail by
many authors analytically (e.g. Abramowicz 1981, 1985) and by
large-scale hydrodynamical simulations (e.g. Igumenshchev &
Beloborodov 1997). It became a standard concept in black hole
accretion theory. Figure 2 schematically illustrates the Roche
lobe overflow mechanism. The leftmost panel presents a demon-
strative profile of disk angular momentum, which reaches the
Keplerian value at the radius corresponding to the self-crossing
of the equipotential surfaces presented in the middle panel.
To flow through this “cusp”, matter must have potential energy
higher than the value of the potential at this point, i.e., the “po-
tential barrier” is crossed only when the matter overflows its
Roche lobe. Precise profiles of the potential barriers and the an-
gular momentum, calculated with the slim disk model, are pre-
sented in Figs. 3 and 4, respectively.

7 Krolik & Hawley defined the inner edges [4], [5] and [6] and in ad-
dition a seventh edge [7], the turbulence edge, where flux-freezing be-
comes more important than turbulence in determining the magnetic field
structure. Magnetic fields are not considered for slim accretion disks,
and we therefore do not discuss [7].

Fig. 3. Profiles of the effective potential near the potential barrier (solid
lines) for different accretion rates, α = 0.01 and a∗ = 0. The arrows
indicate locations of the inner edge potential spout – rpot corresponding
to the top of the potential barrier. The horizontal dashed lines present
the energy of the gas overflowing the barrier calculated at rpot.

The potential difference between the horizon and the spout
is infinite, and therefore no external force can prevent the matter
located there from plunging into the black hole. At radii greater
that rpot, the potential barrier at r = rpot retains the matter inside
this radius. We note, that because the dynamical equilibrium is
given (approximately) by ∇iUeff = ∇iP/ρ, with ρ being the den-
sity, one may also say that it is the pressure gradient (the pressure
stress) that holds the matter within rpot.

The specific angular momentum in the Novikov-Thorne
model is assumed to be Keplerian. Slim disk models do not
a priori assume an angular momentum distribution, but self-
consistently calculate it from the relevant equations of hydro-
dynamics Eqs. (A.1)−(A.8). These calculations indicate that the
type of angular momentum distribution depends on whether the
accretion rate and viscosity constrain the flow to be either disk-
like or Bondi-like type.

In the Bondi-type accretion flows, the angular momentum is
everywhere sub-Keplerian, L < LK. These flows are typical of
high viscosities and high accretion rates, as the case of α = 0.1
and ṁ = 10 shown in Fig. 4. This is the only Bondi-like flow in
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Fig. 4. Angular momentum profiles for slim disk solutions with
α = 0.01 (left panel) and α = 0.1 (right panel). In both panels,
three curves are presented for sub-Eddingtonian, Eddingtonian, and
super-Eddingtonian accretion rates. The thin dotted line presents the
Keplerian angular momentum profile.

this figure. In the disk-like accretion flows, the angular momen-
tum of the matter in the disk is sub-Keplerian everywhere, except
the strong-gravity region rpot < r < rcen, where the flow is super-
Keplerian, L > LK. The radius rcen > rISCO corresponds to the
ring of the maximal pressure in the accretion disk. This is also
the minimum of the effective potential. The radius rpot < rISCO
delineates a saddle point for both pressure and effective poten-
tial; this is also the location of the “potential spout inner edge”,
rin = rpot.

We note that in the classic solutions for spherically accretion
flows found by Bondi (1952) the viscosity is unimportant and
the sonic point is saddle, while in the “Bondi-like” flows dis-
cussed here, angular momentum transport by viscosity is essen-
tially important and the sonic point is usually nodal. Therefore,
one should keep in mind that the difference between these types
of accretion flows is also determined by the relative importance
of pressure and viscosity. For this reason, a different terminology
is often used. Instead of “disk-like”, one uses the term “pressure-
driven”, and instead of “Bondi-like”, one uses “viscosity-driven”
(see e.g. Matsumoto et al. 1984; Kato et al. 2008).

From the above discussion, it is clear that the location of this
particular inner edge rpot is formally given as the smaller of the
two roots, r± = (r+, r−), of the equation
[
L(r) − LK(r)

]
r=r±
= 0. (1)

The larger root corresponds to rcen. Obviously, Eq. (1) has al-
ways a solution for the disk-like flows, and never for the Bondi-
like flows. Figure 5 shows a division of the parameter space into
regions occupied by Bondi-like and disk-like flows.

The location of the potential spout inner edge rpot is shown
in Fig. 6 for α = 0.01. We note that for low accretion rates,
ṁ <∼ 0.3, the location of the potential spout inner edge coincides
with ISCO. At ṁ ≈ 0.3, the location of the potential spout jumps
to a new position, which is close to the radius of the innermost
bound circular orbit, rIBCO. This behavior has long been recog-
nized first by Kozłowski et al. (1978) for Polish doughnuts, and
then by Abramowicz et al. (1988) for slim disks. We conclude
the section on the potential spout inner edge by giving an ap-
proximate formula for its location

rpot(a∗, ṁ) = Min
[
(0.275 − 0.410a∗ + 0.143a∗2)ṁ−1.4

+ 4.45−4.87a∗+8.06a∗2−6.38a∗3; 0.985 rISCO

]
. (2)

The formula in Eq. (2) is valid for α = 0.01.

Fig. 5. Location of the Bondi-like and the disk-like slim accretion disks
in the [α, ṁ] parameter space. The Bondi-like accretion flows are every-
where sub-Keplerian. Disk-like flows are sub-Keplerian for most radii,
but also have a super-Keplerian part around ISCO.

Fig. 6. Location of the potential spout inner edge rpot for viscosity α =
0.01 and a∗ = 0. Solid lines show the exact location of rpot given by
Eq. (1). The approximation given by Eq. (2) is shown by dashed lines,
and the location of ISCO by dotted lines.

4. The sonic edge

By a series of algebraic manipulations, one reduces the slim disk
equations in Eqs. (A.1)−(A.8) to a set of two ordinary differen-
tial equations for two dependent variables, e.g. the Mach number
η = −V/c2

S = −VΣ/P and the angular momentumL = −uφ,

d ln η
d ln r

=
N1(r, η,L)
D(r, η,L)

d lnL
d ln r

=
N2(r, η,L)
D(r, η,L)

· (3)
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Fig. 7. Location of the sonic point as a function of the accretion rate for
different values of α, for a non-rotating black hole, a∗ = 0. The solid
curves are for saddle-type solutions, while the dotted curves present
nodal-type regimes.

For a non-singular physical solution, the nominatorsN1 and N2
must vanish at the same radius as the denominator D. The de-
nominator vanishes at the sonic edge (or sonic radius) where the
Mach number is close to unity, i.e.

D(r, η,L)| r=rson = 0. (4)

For low mass accretion rates, lower than about 0.3 ṀEdd in the
case of a∗ = 0, the sonic edge rson is close to ISCO, indepen-
dently of the viscosity α, as Fig. 7 shows. At about 0.3 ṀEdd,
a qualitative change occurs, resembling a “phase transition”
from the Shakura-Sunyaev behavior to a very different slim-disk
behavior.

For higher accretion rates, the location of the sonic point
significantly departs from ISCO. For low values of α, the sonic
point moves closer to the horizon down to ∼4 M for α = 0.001.
For α > 0.2, the sonic point moves outward with increasing ac-
cretion rate reaching values as high as 8 M for α = 0.5 and
100 ṀEdd. This effect was first noticed for low accretion rates
by Muchotrzeb-Czerny (1986) and later investigated for a wide
range of accretion rates by Abramowicz et al. (1988), who ex-
plained it in terms of the disk-Bondi dichotomy. The dependence
of the sonic point location on the accretion rate in the near-
Eddington regime is more complicated and is related to, for this
range of accretion rates, the transition from the radiatively effi-
cient disk to the slim disk occuring close to the sonic radius.

The topology of the sonic point is important, because phys-
ically acceptable solutions must be of the saddle or nodal type,
the spiral type being forbidden. The topology may be classified
by the eigenvalues λ1, λ2, λ3 of the Jacobi matrix

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂D
∂r

∂D
∂η

∂D
∂L

∂N1
∂r

∂N1
∂η

∂N1
∂L

∂N2
∂r

∂N2
∂η

∂N2
∂L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (5)

Because det(J) = 0, only two eigenvalues λ1, λ2 are non-zero,
and the quadratic characteristic equation that determines them
takes the form,

2 λ2 − 2 λ tr(J) −
[
tr(J2) − tr2(J)

]
= 0. (6)

The nodal type is given by λ1λ2 > 0 and the saddle type by
λ1λ2 < 0, as indicated in Fig. 7 by the dotted and the solid

Fig. 8. Dependence of the angular momentum at the horizon on accre-
tion rate for solutions with different values of α for a∗ = 0.

lines, respectively. For the lowest values of α, only the saddle-
type solutions exist. For moderate values of α (0.1 ≤ α ≤ 0.4),
the topological type of the sonic point changes at least once with
increasing accretion rate. For the highest α, solutions have only
nodal-type critical points.

The extra regularity conditions at the sonic point
Ni(r, η,L) = 0 are satisfied only for one particular value
of the angular momentum at the horizon, which is the eigen-
value of the problem. The parameter Lin is not known a priori,
and should be found. Figure 8 shows how Lin depends on both
the accretion rate and the α viscosity parameter.

5. The variability edge

Axially symmetric and stationary states of slim accretion disks
are, obviously, theoretical idealizations. Real disks are non-axial
and non-steady. In particular, one expects transient coherent fea-
tures at accretion disk surfaces – clumps, flares, and vortices.
The orbital motion of these features could quasi-periodically
modulate the observed flux of radiation, mostly by means of the
Doppler effect and the relativistic beaming. We define Π to be
the “averaged” variability period, and ΔΠ a change in the period
during one period caused by the radial motion of a spot. The
variability quality factor Q may be estimated by,

1
Q
=
ΔΠ

Π
=
ΔΩ

Ω
=

1
Ω

dΩ
dr
Δr = 2π

1
Ω2

dΩ
dr

ur

ut
, (7)

where ur/ut = dr/dt and ur and ut are contravariant com-
ponents of the four velocity. The period is given in terms of
the orbital angular velocity by Π = 2π/Ω. Using the relations
(see Appendix A for the explanation of the notation used)

ur =
V

√
1 − V2

√
Δ

r

ut =
γ
√

A

r
√
Δ
=

√
A

r
√
Δ

1√
(1 − V2)(1 − (Ṽφ)2)

, (8)

where V is the radial velocity measured by an observer corotat-
ing with the fluid, one obtains

Q =
1

2π

∣∣∣∣∣∣
d logΩ
d log r

∣∣∣∣∣∣
−1 ∣∣∣∣∣∣

V̄φ

V

∣∣∣∣∣∣ f ∗(a∗, r), (9)
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Fig. 9. The fluid flow trajectories in slim accretion disks shown by thin solid lines for different accretion rates. Locations of rpot and the location
of black hole horizon are shown by thick gray solid and broken lines, respectively. For low accretion rates, the pattern of trajectories consists of
very tight spirals (almost circles) for r > rpot ≈ rISCO and very wide spirals (almost a radial fall) for r < rpot. In this case, there is a sharp transition
from almost circular motion to almost radial free-fall that clearly defines the variability edge as rvar = rISCO. For higher accretion rates, the fluid
trajectories are wide open spirals in the whole inner region of the flow and the variability edge makes no sense.

Fig. 10. The quality factor Q profiles for different accretion rates.
Triangles show rpot for each rate. The vertical dashed line denotes the
location of ISCO.

where

f ∗(a∗, r) ≡ r3

√
ΔA
= +

[
1 − X − X2a∗2 (a∗2 + 1) − X5 a∗4

]−1/2
,

V̄φ =
Vφ√

1 − (Vφ − ωR̃)2
, (10)

and X = 2rG/r. From Eqs. (A.2) and (A.5), it is clear than ΔA >
0 outside the black hole horizon. We note that in the Newtonian
limit it is X � 1 and one has f ∗(a∗, r) = 1. In this limit, V and V̄φ

are the radial and azimuthal components of velocity, and Eq. (9)
takes its obvious Newtonian form.

The behavior of the quality factor Q is shown in Fig. 10.
Profiles for four accretion rates are drawn. As Fig. 9 shows,
the lower accretion rate the smaller radial velocity component,
hence the quality factor Q in general increases with decreasing
accretion rate. For the lowest values of ṁ, a rapid drop is visible

at ISCO corresponding to the change in the nature of the flow
(gas enters the free-fall region below ISCO). For higher accre-
tion rates, this behaviour is suppressed as the trajectories become
wide open spirals well outside ISCO.

We note that our definition given in Eq. (7) of the quality fac-
tor Q, essentially agrees with a practical definition of the vari-
ability quality factor Q0 defined by observers with the help of
the observationally constructed Fourier variability power spec-
tra, I(ν). Here I(ν) is the observed variability power (i.e. the
square of the observed amplitude) at a particular observed vari-
ability frequency ν. Any observed quasi periodic variability of
the frequency ∼ν0 can clearly be seen in the power spectrum as
a local peak in I(ν), centered on a particular frequency ν0. The
half-width Δν of the peak defines the variability quality factor by
Q0 = ν/Δν0.

Quasi-periodic variability of kHz frequencies, called
kHz QPO, is observed from several low-mass neutron star and
black hole binaries. In a pioneering and important piece of re-
search, Barret et al. (2005) carefully measured the quality factor
for a particular source in this class (4U 1608-52) and found that
Q0 ∼ 200, i.e. that the kHz signals are very coherent. They ar-
gued that Q0 ∼ 200 cannot be due to kinematic effects in the
orbital motion of hot spots, clumps, or other similar features lo-
cated at the accretion disk surface, because these features are too
quickly sheared out by the differential rotation of the disk (see
also Bath et al. 1974; Pringle 1981). They also argued that al-
though coherent vortices may survive much longer times at the
disk surface (e.g. Abramowicz et al. 1995), if they participate in
the inward radial motion, the observed variability Q0 cannot be
high. Our results shown in Fig. 10 illustrate and strengthen this
point. We also agree with the conclusion reached by Barret et al.
(2005) that the observational evidence against orbiting clumps as
a possible explanation of the phenomenon of kHz QPO, seems to
indicate that this phenomenon is probably caused by the accre-
tion disk global oscillations8. For excellent reviews of the QPO
oscillatory models, we refer to Wagoner (1999) and Kato (2001).

8 Barret et al. (2005) also found how Q0 varies in time for each of
the two individual oscillations in the “twin-peak QPO”. This places
strong observational constraints on possible oscillatory models of the
twin peak kHZ QPO; see also Boutelier et al. (2010).
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Fig. 11. Ratio of the angular momentum flux caused by torque to the
flux caused by advection calculated at rpot (top) and rson (bottom panel)
versus mass accretion rate for a number of values of α and a∗ = 0.
The rpot profiles for high viscosities terminate when the disk enters the
Bondi-like regime.

Although clumps, hot-spots, vortices or magnetic flares can-
not explain the coherent kHz QPOs with Q0 ∼ 200, they cer-
tainly are important in explaining the continuous, featureless
Fourier variability power spectra (see e.g. Abramowicz et al.
1991; Schnittman 2005; Pecháček et al. 2008, and references
quoted there). Our results shown in Fig. 10 indicate that: (i) at
low accretion rates, a sharp high-frequency cut-off in I(ν) may
be expected at about the ISCO frequency; (ii) at high accretion
rates, there should be no cut-off in I(ν) at any frequency; and (iii)
the logarithmic slope p = (d ln I/d ln ν) should depend on ṁ.

A more quantitative description of these points (i)−(iii) will
be given in a future publication (Straub, in press).

6. The stress edge

The Shakura-Sunyaev model assumes that there is no torque
at the inner edge of the disk, which in this model coincides
with ISCO. Slim disk model assumes that there is no torque at
the horizon of the black hole. This makes no assumption about
the torque at the disk inner edge, but calculations prove that
the torque is small there.

The zero-torque at the horizon is consistent with the small
torque at the inner edge of slim disks, as Fig. 11 shows.
The figure presents the relative importance of the torque T

Fig. 12. Profiles of rstr defined as the radius with given value of the
torque parameter χ for α = 0.01. BH horizon and ISCO are also shown
with dot-dashed and dashed lines, respectively.

by comparing it with the “advective” flux of angular momen-
tum Ṁ j (cf. Eq. (B.1)). For the viscosity parameter α smaller
than about 0.01, the ratio χ = T /Ṁ j at both rpot and rson
is smaller than 0.01 even for highly super-Eddington accretion
rates, and for low accretion rates the ratio is vanishingly small,
χ ≈ 10−5. For high viscosity, α = 0.5, the ratio is very small for
small accretion rates, χ < 10−3 and smaller than about 0.1 for
super-Eddington accretion rates (calculated at the sonic radius,
as the disk enters the Bondi-like regime at these high accretion
rates).

To define the stress inner edge rstr, one has to specify the
characteristic value of the torque parameter χ. Profiles of rstr
for a few values of χ and α = 0.01 are shown in Fig. 12. The
stress edge for χ→ 0 is located at ISCO for low accretion rates.
When the accretion rate exceeds ∼0.3 ṀEdd, the edge departs
from ISCO and moves closer to BH approaching its horizon with
increasing ṁ. The behaviour of rstr profiles for higher (>∼0.1) val-
ues of χ is different – they move away from the BH as the angu-
lar momentum profiles become flatter with increasing accretion
rates (compare Fig. 4).

In the case of disk-like accretion of a very low viscosity α ≤
0.01, we find to high accuracy that

rpot ≈ rson. (11)

In this case, the “inner edge” inherits both the sonic edge and
the potential spout edge properties, indicative of a small torque,
which is indeed probably the case. By pushing the MHD numer-
ical simulations to their limits, Shafee et al. (2008) and Penna
et al. (2010) calculated a thin, H/r <∼ 0.1, disk-like accretion
flow, and demonstrated that its inner edge torque is small.

7. The radiation edge

As discussed in the previous section, the torque at rpot < rISCO is
small, but non-zero and therefore there is also orbital energy dis-
sipation at radii smaller than ISCO. Thus, some radiation does
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Fig. 13. “Luminosity edges” defining the inner radii of the area emitting
a given amount of the total disk radiation. The lines are drawn for 95%,
99%, and 99.9% of the total emission. The dashed line shows the loca-
tion of the potential spout inner edge rpot. The gravitational suppression
of the radiation has been taken into account.

originate in this region and the inner edge is not expected to
coincide with the radiation edge, rrad < rpot. In Fig. 13, we
present profiles of rrad defined as the radii limiting area emitting
a given fraction of the disk total luminosity. For low accretion
rates (<0.3 ṀEdd), the disk emission terminates close to ISCO
as the classical models of accretion disks predict. The locations
of the presented rrad are determined by the regular Novikov &
Thorne flux radial profile. For higher accretion rates, the disk
becomes advective and the maximum of the emission moves
significantly inward. As a consequence of the increasing rate of
advection (and resulting inward shift of rpot), the efficiency of
accretion drops down.

We emphasize that the location of the radiation edge is not
determined by the location of the stress edge (as some authors
seem to believe), but by the significant advection flux bringing
energy into the region well below ISCO.

We define rout  rG to be the outer radius of the disk. The
total luminosity of the disk can be estimated from

L = Ṁerad + (TΩ)rad − Ṁeout − (TΩ)out,

0 = ṀLrad + Trad − ṀLout − Tout, (12)

where T denotes the torque at a given radius. For both Ωout ≈ 0,
eout ≈ 0 one derives

L = Ṁ
[
erad + χ(LΩ)rad

]
≡ ηṀ, (13)

where χ is the ratio of the viscous torque to the advective flux of
angular momentum (see Figs. 11 and 12).

Because χ � 1, the efficiency of accretion η depends mainly
on the specific energy at the inner edge, erad. The farther away
the inner edge from ISCO (and closer to the black hole), the
smaller the efficiency.

8. The reflection edge

The iron Kα fluorescent line is an observed characteristic feature
of many sources with black hole accretion disks (Miller 2006;
Remillard & McClintock 2006). The intensity and the shape of
this line depends strongly on the physical conditions close to the
inner edge. This has been discussed by many authors, including
Reynolds & Fabian (2008) who gave three conditions for line
formation: (i) the flow has to be Thomson-thick in the vertical
direction; (ii) disk has to be irradiated by an external source of
X-rays (hard X-ray irradiation plays a crucial role in the process
of fluorescence and changes the ionization degree of matter); and
(iii) the ionization state should be sufficiently low (iron cannot
be fully ionized).

Nevertheless, since fluorescent iron-line emission depends
on many aspects, such as the energy distribution of illuminating
photons, temperature, ionization state, and density of the emit-
ting matter as well as iron abundance, there is no obvious condi-
tion for the reflection edge (defined as the minimal radius where
the reflection features originate). Additional computations of re-
flection models show that for some set of parameters iron fluo-
rescent line may arise even from Thomson-thin matter (Dumont
et al. 2002). In this paper, we assume that the reflection edge is
connected to the condition

τeff =
√
τabs(τabs + τes) > 1. (14)

However, one has to keep in mind that the effective optical
depth at the iron line band may be much larger than the above,
frequency-averaged value.

In Fig. 14, we show profiles of the effective optical depth τeff
in different regimes of accretion rates for α = 0.1 and a∗ = 0.
Three characteristic types of their behaviour are shown: sharp
drop, maximum and monotonic at the top, middle, and bottom
panels, respecively. The behaviour of different values of α and a∗

is qualitatively similar (but not quantitatively as in general τeff
increases with decreasing α). The top panel of the figure, cor-
responding to the lowest accretion rates, shows a sharp drop in
τeff near ISCO. The same behavior was noticed previously e.g.
by Reynolds & Fabian (2008). The drop may clearly define the
inner reflection edge rref ≈ rISCO, limiting the radii where forma-
tion of the fluorescent iron line is prominent. The middle panel,
corresponding to moderate accretion rates, shows a maximum
in τeff near ISCO. The non-monotonic behaviour is caused by
the regions of moderate radii outside ISCO being both radiation
pressure and scattering dominated. We note, that the top of the
maximum of τeff remains close to ISCO for a range of accretion
rates, but for accretion rates higher than 0.3 ṀEdd, it moves closer
to the black hole with increasing ṁ as the disk emission profile
changes due to advection. The bottommost panel corresponds to
super-Eddington accretion rates. The profiles are monotonic in
τeff and define no characteristic inner reflection edge. Close to
the black hole, these flows are effectively optically thin reaching
τeff = 1 at about a few tens of gravitational radii.

When the effective optical depth of the flow becomes less
then unity, our approximation of radiative transfer by diffusion
with grey opacities (Eq. (A.8)) becomes invalid. In these cases,
full radiative transfer through accretion disk atmospheres needs
to be considered (e.g. Davis et al. 2005; Różańska & Madej
2008). Nevertheless, our results allow us to estimate roughly
how far from the black hole the iron line formation is most
prominent, assuming that the disk is uniformly illuminated by an
exterior X-ray source. For accretion rates lower than 0.3 ṀEdd,
the reflection edge is located very close to ISCO and we may
identify the shape of the iron line with the gravitational and
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Fig. 14. Profiles of the effective optical depth τeff for α = 0.1 and a = 0
in three different regimes of accretion rate. Vertical lines denote the
locations of the BH horizon (dotted) and ISCO (dashed). Three types of
behavior of τeff can be seen: sharp drop at ISCO at the lowest accretion
rates, maximum near ISCO for moderate accretion rates, and monotonic
everywhere for the highest accretion rates.

dynamical effects of the ISCO. In the case of higher but sub-
Eddington accretion rates, the maximum of the effective optical
depth is located inside the ISCO, which may possibly allow us
to study extreme gravitational effects on the iron line profile.
However, the assumption that the line is formed at the ISCO is

Fig. 15. The differences between Shakura-Sunyaev and slim disk pic-
ture of the disk inner edge (see text for a detailed explanation of the
figure).

no longer satisfied. The super-Eddington flows have smooth and
monotonic profiles of effective optical depth. Therefore, the re-
flection edge cannot be uniquely defined and no relation between
the shape of the fluorescent lines and ISCO exists. Finally, we
note that these lines may be successfully modeled by clumpy ab-
sorbing material and have nothing to do with relativistic effects
(see e.g. Miller et al. 2009, and references therein). The role of
the ISCO in determining the shape of the Fe lines was also ques-
tioned in the past (based on different reasoning) by Reynolds &
Begelman (1997), whose arguments were then refuted by Young
et al. (1998).

9. Conclusions

We have addressed the inner edge issue by discussing the be-
havior of six differently defined “inner edges” of slim accre-
tion disks around a Kerr black hole. We have found that the
slim disk inner edges behave very differently than the corre-
sponding Shakura-Sunyaev and Novikov-Thorne ones. The dif-
ferences are qualitative and become important for the same range
of luminosities independently of the BH spin. Even at moder-
ate luminosities, L/LEdd >∼ 0.3, there is no unique inner edge.
Differently defined edges are located at different places. For
nearly Eddington luminosities, the differences are huge and the
notion of the inner edge loses all practical significance. We
summarize the properties and locations of the six inner edges
in Table 1.

We now conclude by presenting in Fig. 15 the differences
between the Shakura-Sunyaev and slim-disk (in the disk-like
case) treatment of the inner disk physics. The innermost part of
a Shakura-Sunyaev disk is shown in the left column in Fig. 15,
and the innermost part of a slim disk is shown in the right col-
umn. The upper panel compares the angular momentum in the
disk (the solid line) with the Keplerian distribution (the dashed
line). The ISCO, indicated by the dash-dotted line is at the radius
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Table 1. Summary of the results (specific numbers refer to the case a∗ = 0).

rpot rson rvar rstr rrad rref

L/LEdd <∼ 0.3 rin ≈ rpot ≈ rson ≈ rvar ≈ rstr ≈ rrad ≈ rref ≈ rISCO

for α <∼ 0.1 moves departs from
inward with increasing ISCO; for

ṁ down to ∼rmb; moves inward moves inward 0.3 <∼ L/LEdd <∼ 1.0
for α � 0.1 with increasing with increasing rref < rISCOL/LEdd >∼ 0.3 undefined

for α >∼ 0.1 and rson ≈ rmb; L down to BH L down to BH
sufficiently high ṁ disk horizon. horizon. for L/LEdd >∼ 1.0

enters the Bondi for α >∼ 0.2 undefined
regime – undefined rson > rISCO

where the Keplerian angular momentum has its minimum. The
potential spout (a square) and the center (a triangle) are defined
as the crossings of the angular momentum in the disk line with
the Keplerian line. For slim disks, they occur at two different
radii, on both sides of the ISCO. For Shakura-Sunyaev disks,
they merge into one singular location at ISCO. The lower panel
shows the cross-section of the disk. The slim disk everywhere
has a finite thickness, while the Shakura-Sunyaen disk is singular
at ISCO (it has a zero thickness there). The sonic radius (a cross)
is where the accretion component of the velocity equals the lo-
cal sound speed. In slim disks, the sonic point corresponds to a
critical point of the set of differential equations, that by means
of the regularity conditions defines the global eigensolution of
the problem. The Shakura-Sunyaev disk is described by local al-
gebraic equations and this global eigenvalue aspect is missing,
thus the location of a sonic point is of no relevance.
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Appendix A: The Kerr geometry slim disks

The Shakura-Sunyaev models are local: they are described by
algebraic equations, valid at any particular (radial) location in
the disk, independently of physical conditions at different loca-
tions. In contrast to this, the slim disk models of accretion disks
are non-local. They are described by differential equations glob-
ally connecting physical conditions at all radial locations from
infinity to the black hole horizon.

Models of slim disks were initially constructed by
Abramowicz et al. (1988), who used the pseudo-Newtonian po-
tential of Paczyński & Wiita (1980) and Newtonian equations
derived by Paczyński & Bisnovatyi-Kogan (1981) and later im-
proved by Muchotrzeb & Paczyński (1982), Matsumoto et al.
(1984), and Muchotrzeb (1983). The general relativistic version
(the Kerr metric) of the slim disk equations was derived and
elaborated on by Lasota (1994), Abramowicz et al. (1996), and
Gammie & Popham (1998), and later by Sądowski (2009), who
made several corrections and improvements to the results of the
previous authors, and numerically constructed slim disk solu-
tions for a wide range of parameters applicable to the X-ray bina-
ries. In particular, he calculated solutions for the whole relevant

range of accretion rates, from very sub-Eddingtonian, to moder-
ately super-Eddingtonian ones. In this paper, we follow the no-
tation and conventions adopted by Sądowski (2009). The Kerr
geometry slim-disk equations adopted here are:

(i) The mass conservation

Ṁ = −2πΣΔ1/2 V
√

1 − V2
, (A.1)

where Σ =
∫ +h

−h
ρ dz ≈ 2 Hρ is disk surface density and V is the

gas radial velocity as measured by an observer at fixed r, who
co-rotates with the fluid. Here

Δ = r2 − 2M r − a2. (A.2)

(For the Kerr metric description, see e.g. Kato et al. 2008, or
any textbook on general relativity). Equation (A.1) has the same
form in the Shakura-Sunyaev model.

(ii) The radial momentum conservation:

V
1 − V2

dV
dr
=
A
r
−

1
Σ

dP
dr
, (A.3)

where

A = − MA
r3ΔΩ+kΩ

−
k

(Ω −Ω+k )(Ω −Ω−k )

1 − Ω̃2R̃2
, (A.4)

A = r4 + r2a2 + 2M ra2, (A.5)

Ω = uφ/ut is the angular velocity with respect to the stationary
observer, Ω̃ = Ω − ω is the angular velocity with respect to the
inertial observer,Ω±k = ±M1/2/(r3/2±aM1/2) are the angular fre-
quencies of the co-rotating and counter-rotating Keplerian orbit
and R̃ = A/(r2Δ1/2) is the radius of gyration. In the Shakura-
Sunyaev model, this equation is a trivial identity 0 = 0 because
the radial pressure and velocity gradients vanish, and rotation is
Keplerian, Ω = Ω+k .

(iii) The angular momentum conservation:

Ṁ
2π

(L − Lin) =
A1/2Δ1/2γ

r
αP, (A.6)

where L = −uφ is the specific angular momentum, γ is the
Lorentz factor, and P = 2 Hp can be considered to be vertically
integrated pressure. The constant α is the standard alpha vis-
cosity parameter introduced by Shakura & Sunyaev (1973). The
constant Lin is the angular momentum at the horizon, unknown
a priori. It provides an eigenvalue linked to the unique eigenso-
lution to the set of slim disk differential equations constrained
by proper boundary and regularity conditions. The algebraic
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Eq. (A.6) is the same as in the Shakura-Sunyaev model, except
that the Shakura-Sunyaev model assumes that Lin = Lk(ISCO).

(iv) The vertical equilibrium

P
ΣH2

=
L2 − a2(ε2 − 1)

2r4
, (A.7)

where ε = ut is the conserved energy associated with the time
symmetry. The same equation is valid for the Shakura-Sunyaev
model.

(v) The energy conservation

− αPAγ2

r3

dΩ
dr
− 32

3
σT 4

κΣ
= − Ṁ

2πrρ
1

Γ3 − 1

(
dp
dr
− Γ1

p
ρ

dρ
dr

)
, (A.8)

where T is the disk central temperature. The right-hand side of
this equation represents the advective cooling and vanishes in
the Shakura-Sunyaev model. Because rotation is Keplerian in
the Shakura-Sunyaev model, Ω = Ω+k , which means that Ω is a
known function of r and therefore that the first term on the left-
hand side (which represents viscous heating) is algebraic. The
second term, which represents the radiative cooling (in a diffu-
sive approximation) is similar in the Shakura-Sunyaev model.

Appendix B: No torque at the black hole horizon

The assumption of a (vanishingly) small torque in the region be-
tween black hole and accretion disk is physically well motivated.
We recall that the very meaning of a torqueT is that it transports
angular momentum without transporting mass. Correspondingly,
the total angular momentum flux J̇ through a surface equals,
in general,

J̇ = Ṁ j + T , (B.1)

where Ṁ is the mass flux and j is the angular momentum density
(per unit mass). However, the torque is only a phenomenological
concept. Microscopically, the flux J̇ should be seen as a differ-
ence of material fluxes that come from the opposite sides of the
surface, J̇ = [Ṁ+ j+] − [Ṁ− j−]. One also has Ṁ = Ṁ+ − Ṁ−,
and j = ( j+Ṁ+ + j−Ṁ−)/(Ṁ+ + Ṁ−). Microscopically then, the
torque is equal to T = 2Ṁ+ Ṁ−( j+ − j−)/(Ṁ+ + Ṁ−). It van-
ishes necessarily when all matter crosses the surface in only one
direction, i.e. when either Ṁ+ = 0 or Ṁ− = 0. As the one-side
matter flux is the only fundamental property of the black hori-
zon, one concludes that there should be no torque at the black
hole surface.

Since the Blandford & Znajek (1977) process energizes the
jet (and disk) by extracting the rotational energy of a black hole
by means of electromagnetic braking, some astrophysicists ar-
gue that in this case there must be a “Maxwell” torque between
the black hole and outside matter. However, by looking at the
Blandford-Znajek process from the quantum electrodynamics
perspective, one can see only ingoing, but no outgoing photons.
Thus, there is only a one-way traffic of photons, and no torque
possible. The photons with negative energy and angular momen-
tum that are present in the ergosphere, are responsible for the
slowing down of the hole, similarly to the negative energy par-
ticles in the classic Penrose process that must necessarily also
have negative angular momentum. This point of view, that the
Blandford-Znajek process is an electromagnetic version of the
Penrose process, was discussed in the context of the classical
Maxwell electrodynamics (in Kerr geometry) by several authors,
in particular most forcefully by Komissarov (2008).

Here, we generalize Komissarov’s point to any material field,
not only the electromagnetic one. Following Komissarov, we

consider the local ZAMO (or FIDO) observer in the Kerr ge-
ometry. His four velocity in terms of the Killing vectors ηi (time
symmetry) and ξi (axial symmetry) is given by ni = q(ηi + ωξi),
where ω is the angular velocity of frame dragging, and q > 0
follows from normalization ninkgik = −1. We now consider a
general matter or field, described by an unspecified stress-energy
tensor T i

k. The energy flux in the ZAMO frame is Ei = −T i
knk.

The rate at which energy is acquitted by the black hole is

E = −
∫

T i
knk dNi > 0, (B.2)

where
∫

dNi is the surface integral over the horizon. The in-
equality sign follows from the locally measured energy having
to be positive. The above integral may by transformed into

0 < E = −
∫

q T i
k(ηk + ωξk) dNi = qH(E∞ − ωH J∞), (B.3)

where the index H denotes horizon, and E∞ and J∞ are the
“energy at infinity” and the “angular momentum at infinity” ac-
quired by the black hole absorbing the corresponding fluxes of
these quantities defined by,

Ei
∞ = −T i

kη
k, Ji

∞ = T i
kξ

k. (B.4)

From Eq. (B.3), one concludes that E∞ > J∞ωH . As in the clas-
sic Penrose process, the necessary condition for the extraction
of energy at infinity is that the energy (at infinity) absorbed by a
black hole is negative, E∞ < 0. This is equivalent to J∞ωH < 0.
Thus, in a way fully analogous to the line of arguments that is
made when discussing the Penrose process, one may say that if
energy at infinity increases because the black hole absorbed a
negative-at-infinity energy, then the black hole must also slow
down by absorbing matter or electromagnetic flux of negative
angular momentum.
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