79 research outputs found

    Anthrax Toxins Inhibit Neutrophil Signaling Pathways in Brain Endothelium and Contribute to the Pathogenesis of Meningitis

    Get PDF
    Anthrax meningitis is the main neurological complication of systemic infection with Bacillus anthracis approaching 100% mortality. The presence of bacilli in brain autopsies indicates that vegetative bacteria are able to breach the blood-brain barrier (BBB). The BBB represents not only a physical barrier but has been shown to play an active role in initiating a specific innate immune response that recruits neutrophils to the site of infection. Currently, the basic pathogenic mechanisms by which B. anthracis penetrates the BBB and causes anthrax meningitis are poorly understood.Using an in vitro BBB model, we show for the first time that B. anthracis efficiently invades human brain microvascular endothelial cells (hBMEC), the single cell layer that comprises the BBB. Furthermore, transcriptional profiling of hBMEC during infection with B. anthracis revealed downregulation of 270 (87%) genes, specifically key neutrophil chemoattractants IL-8, CXCL1 (Gro alpha) and CXCL2 (Gro beta), thereby strongly contrasting hBMEC responses observed with other meningeal pathogens. Further studies using specific anthrax toxin-mutants, quantitative RT-PCR, ELISA and in vivo assays indicated that anthrax toxins actively suppress chemokine production and neutrophil recruitment during infection, allowing unrestricted proliferation and dissemination of the bacteria. Finally, mice challenged with B. anthracis Sterne, but not the toxin-deficient strain, developed meningitis.These results suggest a significant role for anthrax toxins in thwarting the BBB innate defense response promoting penetration of bacteria into the central nervous system. Furthermore, establishment of a mouse model for anthrax meningitis will aid in our understanding of disease pathogenesis and development of more effective treatment strategies

    Gene Expression Profiling in Cells with Enhanced γ-Secretase Activity

    Get PDF
    BACKGROUND: Processing by gamma-secretase of many type-I membrane protein substrates triggers signaling cascades by releasing intracellular domains (ICDs) that, following nuclear translocation, modulate the transcription of different genes regulating a diverse array of cellular and biological processes. Because the list of gamma-secretase substrates is growing quickly and this enzyme is a cancer and Alzheimer's disease therapeutic target, the mapping of gamma-secretase activity susceptible gene transcription is important for sharpening our view of specific affected genes, molecular functions and biological pathways. METHODOLOGY/PRINCIPAL FINDINGS: To identify genes and molecular functions transcriptionally affected by gamma-secretase activity, the cellular transcriptomes of Chinese hamster ovary (CHO) cells with enhanced and inhibited gamma-secretase activity were analyzed and compared by cDNA microarray. The functional clustering by FatiGO of the 1,981 identified genes revealed over- and under-represented groups with multiple activities and functions. Single genes with the most pronounced transcriptional susceptibility to gamma-secretase activity were evaluated by real-time PCR. Among the 21 validated genes, the strikingly decreased transcription of PTPRG and AMN1 and increased transcription of UPP1 potentially support data on cell cycle disturbances relevant to cancer, stem cell and neurodegenerative diseases' research. The mapping of interactions of proteins encoded by the validated genes exclusively relied on evidence-based data and revealed broad effects on Wnt pathway members, including WNT3A and DVL3. Intriguingly, the transcription of TERA, a gene of unknown function, is affected by gamma-secretase activity and was significantly altered in the analyzed human Alzheimer's disease brain cortices. CONCLUSIONS/SIGNIFICANCE: Investigating the effects of gamma-secretase activity on gene transcription has revealed several affected clusters of molecular functions and, more specifically, 21 genes that hold significant potential for a better understanding of the biology of gamma-secretase and its roles in cancer and Alzheimer's disease pathology

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    X-linked agammaglobulinemia (XLA) : Phenotype, diagnosis, and therapeutic challenges around the world

    Get PDF
    Background: X-linked agammaglobulinemia is an inherited immunodeficiency recognized since 1952. In spite of seven decades of experience, there is still a limited understanding of regional differences in presentation and complications. This study was designed by the Primary Immunodeficiencies Committee of the World Allergy Organization to better understand regional needs, challenges and unique patient features. Methods: A survey instrument was designed by the Primary Immunodeficiencies Committee of the World Allergy Organization to collect both structured and semi-structured data on X-linked agammaglobulinemia. The survey was sent to 54 centers around the world chosen on the basis of World Allergy Organization participation and/or registration in the European Society for Immunodeficiencies. There were 40 centers that responded, comprising 32 countries. Results: This study reports on 783 patients from 40 centers around the world. Problems with diagnosis are highlighted by the reported delays in diagnosis>24 months in 34% of patients and the lack of genetic studies in 39% of centers Two infections exhibited regional variation. Vaccine-associated paralytic poliomyelitis was seen only in countries with live polio vaccination and two centers reported mycobacteria. High rates of morbidity were reported. Acute and chronic lung diseases accounted for 41% of the deaths. Unusual complications such as inflammatory bowel disease and large granular lymphocyte disease, among others were specifically enumerated, and while individually uncommon, they were collectively seen in 20.3% of patients. These data suggest that a broad range of both inflammatory, infectious, and autoimmune conditions can occur in patients. The breadth of complications and lack of data on management subsequently appeared as a significant challenge reported by centers. Survival above 20 years of age was lowest in Africa (22%) and reached above 70% in Australia, Europe and the Americas. Centers were asked to report their challenges and responses (n = 116) emphasized the difficulties in access to immunoglobulin products (16%) and reflected the ongoing need for education of both patients and referring physicians. Conclusions: This is the largest study of patients with X-linked agammaglobulinemia and emphasizes the continued morbidity and mortality of XLA despite progress in diagnosis and treatment. It presents a world view of the successes and challenges for patients and physicians alike. A pivotal finding is the need for education of physicians regarding typical symptoms suggesting a possible diagnosis of X-linked agammaglobulinemia and sharing of best practices for the less common complications.Peer reviewe

    Circadian levels of proprotein convertase subtilisin/kexin type 9 as new target for chronotherapy with monoclonal antibodies

    No full text
    The high prevalence of mortality and morbidity due to cardiovascular diseases (CVDs) indicates that there is a large unmet medical need for new and effective agents that are also well tolerated and safe, especially for patients unable to either tolerate statins or achieve optimal low-density lipoprotein cholesterol (LDL-C) which is a major risk factor of myocardial infarction and stroke. There is evidence that proprotein convertase subtilisin/kexin type 9 (PCSK9) concentration might accelerate atherosclerosis by promoting inflammation, endothelial dysfunction, and hypertension by mechanisms independent of the LDL receptor. Recent clinical trials with PCSK9 inhibitor monoclonal antibodies indicate that with present doses and mode of administration, substantial benefit can be achieved in reducing cardiovascular events with modest reduction in mortality. There is an unmet need to find out PCSK9 metabolism in relation to other risk factors of CVDs, with respect to PCSK9 concentrations according to time structure. This is important because LDL receptor activity and synthesis of cholesterol in the hepatocyte as well as PCSL9 gene activity may be circadian periodic. It is possible that knowledge about circadian concentration of PCSK9, every 4 hours, according to time structure may provide information about its circadian bioavailability and bioactivity. An agent may be highly bioavailable but may not be bioactive due to circadian dysfunction. Chronotherapy with PCSK9 inhibitors according to time structure may decrease their adverse effects and increase efficacy, compared to same dose administered blindly. © 2018 Nova Science Publishers, Inc

    View point: Anatomy, physiology and pathophysiology of the circadian clock in the liver, gut and the brain

    No full text
    The circadian clock in the brain’s suprachiasmatic nucleus coordinates circadian rhythms and the peripheral clocks, which are capable of independently monitoring normal physiology and metabolism as well as pathophysiology, and allow organismal adaptation to daily environmental cues. Environmental factors such as Western diet, sleep deprivation, and mental stress can influence the functioning of these organs due to circadian disruption. A ketogenic diet can profoundly and differentially affect liver and intestine clocks, resulting in metabolic dysfunctions [1]. The amplitude of clock-controlled genes and BMAL1 chromatin recruitment showed drastic alterations by this diet in the liver, but not in the intestine. Nuclear accumulations of PPARα in both gut and liver cells had different circadian phases. Gut and liver clocks responded in different ways to carbohydrate supplementation versus a ketogenic diet; hence these mechanisms are essential in the pathogenesis of cardio-metabolic diseases (CMDs), such as obesity, metabolic syndrome, diabetes mellitus, coronary artery disease, and hypertension. Disruption of physiological circadian rhythms has been associated with sleep and mood disorders, and there is growing evidence of the harmful consequences of shift work. © 2018 Nova Science Publishers, Inc
    corecore