19 research outputs found

    Isolation and Characterization of Multi-Protein Complexes Enriched in the K-Cl Co-transporter 2 From Brain Plasma Membranes

    Get PDF
    Kcc2 plays a critical role in determining the efficacy of synaptic inhibition, however, the cellular mechanisms neurons use to regulate its membrane trafficking, stability and activity are ill-defined. To address these issues, we used affinity purification to isolate stable multi-protein complexes of K-Cl Co-transporter 2 (Kcc2) from the plasma membrane of murine forebrain. We resolved these using blue-native polyacrylamide gel electrophoresis (BN-PAGE) coupled to LC-MS/MS and label-free quantification. Data are available via ProteomeXchange with identifier PXD021368. Purified Kcc2 migrated as distinct molecular species of 300, 600, and 800 kDa following BN-PAGE. In excess of 90% coverage of the soluble N- and C-termini of Kcc2 was obtained. In total we identified 246 proteins significantly associated with Kcc2. The 300 kDa species largely contained Kcc2, which is consistent with a dimeric quaternary structure for this transporter. The 600 and 800 kDa species represented stable multi-protein complexes of Kcc2. We identified a set of novel structural, ion transporting, immune related and signaling protein interactors, that are present at both excitatory and inhibitory synapses, consistent with the proposed localization of Kcc2. These included spectrins, C1qa/b/c and the IP3 receptor. We also identified interactors more directly associated with phosphorylation; Akap5, Akap13, and Lmtk3. Finally, we used LC-MS/MS on the same purified endogenous plasma membrane Kcc2 to detect phosphorylation sites. We detected 11 sites with high confidence, including known and novel sites. Collectively our experiments demonstrate that Kcc2 is associated with components of the neuronal cytoskeleton and signaling molecules that may act to regulate transporter membrane trafficking, stability, and activity

    Direct activation of KCC2 arrests benzodiazepine refractory status epilepticus and limits the subsequent neuronal injury in mice

    Get PDF
    Hyperpolarizing GABAAR currents, the unitary events that underlie synaptic inhibition, are dependent upon efficient Cl− extrusion, a process that is facilitated by the neuronal specific K+/Cl− co-transporter KCC2. Its activity is also a determinant of the anticonvulsant efficacy of the canonical GABAAR-positive allosteric: benzodiazepines (BDZs). Compromised KCC2 activity is implicated in the pathophysiology of status epilepticus (SE), a medical emergency that rapidly becomes refractory to BDZ (BDZ-RSE). Here, we have identified small molecules that directly bind to and activate KCC2, which leads to reduced neuronal Cl− accumulation and excitability. KCC2 activation does not induce any overt effects on behavior but prevents the development of and terminates ongoing BDZ-RSE. In addition, KCC2 activation reduces neuronal cell death following BDZ-RSE. Collectively, these findings demonstrate that KCC2 activation is a promising strategy to terminate BDZ-resistant seizures and limit the associated neuronal injury

    Anti‑algal activity of the 12‑5‑12 gemini surfactant results from its impact on the photosynthetic apparatus

    Get PDF
    A rapid amplification of algal population has a negative impact on the environment and the global economy. Thus, control of algal proliferation is an important issue and effective procedures which reduce algal blooms and control algal fouling are highly desired. Gemini surfactants are considered to have a low environmental impact, therefore they seem to be a promising group of detergents which could reduce algal blooms in water systems. Furthermore, due to their emulsifying properties they could replace algaecides added to antifouling paints and decrease algae adhesion to various surfaces. In this study the toxic effect of the 12-5-12 gemini surfactant was investigated on Chlorella cells and close attention was paid to a potential mechanism of its action. At the high cell density (10.05 × 107 cells/mL) a dose-dependent cell death was found and the IC50 value was reached at the concentration of 19.6 µmol/L after 72-h exposure to the surfactant. The decrease in chlorophyll autofluorescence shows that the photosynthetic apparatus seems to be the target of the tested compound. The presented studies indicate that gemini surfactants could effectively reduce algal blooms in water systems, and if added to paints, they could decrease algal growth on external building walls or other water immersed surfaces

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    Attenuation of PKR-like ER Kinase (PERK) Signaling Selectively Controls Endoplasmic Reticulum Stress-induced Inflammation Without Compromising Immunological Responses

    No full text
    Inflammation and endoplasmic reticulum (ER) stress are associated with many neurological diseases. ER stress is brought on by the accumulation of misfolded proteins in the ER, which leads to activation of the unfolded protein response (UPR), a conserved pathway that transmits signals to restore homeostasis or eliminate the irreparably damaged cell. We provide evidence that inhibition or genetic haploinsufficiency of protein kinase R-like endoplasmic reticulum kinase (PERK) can selectively control inflammation brought on by ER stress without impinging on UPR-dependent survival and adaptive responses or normal immune responses. Using astrocytes lacking one or both alleles of PERK or the PERK inhibitor GSK2606414, we demonstrate that PERK haploinsufficiency or partial inhibition led to reduced ER stress-induced inflammation (IL-6, CCL2, and CCL20 expression) without compromising prosurvival responses. In contrast, complete loss of PERK blocked canonical PERK-dependent UPR genes and promoted apoptosis. Reversal of eIF2α-mediated translational repression using ISRIB potently suppressed PERK-dependent inflammatory gene expression, indicating that the selective modulation of inflammatory gene expression by PERK inhibition may be linked to attenuation of eIF2α phosphorylation and reveals a previously unknown link between translational repression and transcription of inflammatory genes. Additionally, ER-stressed astrocytes can drive an inflammatory M1-like phenotype in microglia, and this can be attenuated with inhibition of PERK. Importantly, targeting PERK neither disrupted normal cytokine signaling in astrocytes or microglia nor impaired macrophage phagocytosis or T cell polarization. Collectively, this work suggests that targeting PERK may provide a means for selective immunoregulation in the context of ER stress without disrupting normal immune function

    Anthracene-Based Down-Converting Copolymers for Non-Invasive Optogenetic Techniques

    No full text
    The down-conversion of high energy light with a fluorescent material may provide sufficient emission intensity to invoke a measurable neurological response in optogentically-active neurons. This work describes the use of anthracene-containing copolymers for use as a fixed emission material in optogenetic electrophysiology to demonstrate the feasibility of this technique. An anthracene-modified methacrylate was synthesized and copolymerized with methyl methacrylate to produce glassy copolymers with physical properties like those of poly(methyl methacrylate) (PMMA). The fluorescence in both solution and solid states are like those of pure anthracene and overlap fully with the absorption spectrum of channelrhodpsin-2. Scintillation is observed but is weak compared to fluorescence. The copolymers were found to be non-toxic to neuronal cultures. Whole cell patching measured the voltage changes of neurons under UV-irradiation in the absence and presence of a copolymer film. Increased frequencies and amplitudes of electrical events were observed in the presence of the polymers. </div
    corecore