33 research outputs found

    Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance.

    Get PDF
    Unrelenting environmental challenges to the gut epithelium place particular demands on the local immune system. In this context, intestinal intraepithelial lymphocytes (IEL) compose a large, highly conserved T cell compartment, hypothesized to provide a first line of defence via cytolysis of dysregulated intestinal epithelial cells (IEC) and cytokine-mediated re-growth of healthy IEC. Here we show that one of the most conspicuous impacts of activated IEL on IEC is the functional upregulation of antiviral interferon (IFN)-responsive genes, mediated by the collective actions of IFNs with other cytokines. Indeed, IEL activation in vivo rapidly provoked type I/III IFN receptor-dependent upregulation of IFN-responsive genes in the villus epithelium. Consistent with this, activated IEL mediators protected cells against virus infection in vitro, and pre-activation of IEL in vivo profoundly limited norovirus infection. Hence, intraepithelial T cell activation offers an overt means to promote the innate antiviral potential of the intestinal epithelium.Support was provided by the Wellcome Trust (A.C.H., J.L.H., G.R) and Cancer Research UK (A.C.H.), Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust (L.A.-D.; A.C.H.); Marie Curie and EMBO fellowships (M.S.).This is the final published version. It first appeared at http://www.nature.com/ncomms/2015/150519/ncomms8090/full/ncomms8090.html

    Demographics of sources of HIV-1 transmission in Zambia: a molecular epidemiology analysis in the HPTN 071 PopART study

    Get PDF
    BACKGROUND: In the last decade, universally available antiretroviral therapy (ART) has led to greatly improved health and survival of people living with HIV in sub-Saharan Africa, but new infections continue to appear. The design of effective prevention strategies requires the demographic characterisation of individuals acting as sources of infection, which is the aim of this study. METHODS: Between 2014 and 2018, the HPTN 071 PopART study was conducted to quantify the public health benefits of ART. Viral samples from 7124 study participants in Zambia were deep-sequenced as part of HPTN 071-02 PopART Phylogenetics, an ancillary study. We used these sequences to identify likely transmission pairs. After demographic weighting of the recipients in these pairs to match the overall HIV-positive population, we analysed the demographic characteristics of the sources to better understand transmission in the general population. FINDINGS: We identified a total of 300 likely transmission pairs. 178 (59·4%) were male to female, with 130 (95% CI 110-150; 43·3%) from males aged 25-40 years. Overall, men transmitted 2·09-fold (2·06-2·29) more infections per capita than women, a ratio peaking at 5·87 (2·78-15·8) in the 35-39 years source age group. 40 (26-57; 13·2%) transmissions linked individuals from different communities in the trial. Of 288 sources with recorded information on drug resistance mutations, 52 (38-69; 18·1%) carried viruses resistant to first-line ART. INTERPRETATION: HIV-1 transmission in the HPTN 071 study communities comes from a wide range of age and sex groups, and there is no outsized contribution to new infections from importation or drug resistance mutations. Men aged 25-39 years, underserved by current treatment and prevention services, should be prioritised for HIV testing and ART. FUNDING: National Institute of Allergy and Infectious Diseases, US President's Emergency Plan for AIDS Relief, International Initiative for Impact Evaluation, Bill & Melinda Gates Foundation, National Institute on Drug Abuse, and National Institute of Mental Health

    Inferring HIV-1 transmission networks and sources of epidemic spread in Africa with deep-sequence phylogenetic analysis

    Get PDF
    To prevent new infections with human immunodeficiency virus type 1 (HIV-1) in sub-Saharan Africa, UNAIDS recommends targeting interventions to populations that are at high risk of acquiring and passing on the virus. Yet it is often unclear who and where these 'source' populations are. Here we demonstrate how viral deep-sequencing can be used to reconstruct HIV-1 transmission networks and to infer the direction of transmission in these networks. We are able to deep-sequence virus from a large population-based sample of infected individuals in Rakai District, Uganda, reconstruct partial transmission networks, and infer the direction of transmission within them at an estimated error rate of 16.3% [8.8-28.3%]. With this error rate, deep-sequence phylogenetics cannot be used against individuals in legal contexts, but is sufficiently low for population-level inferences into the sources of epidemic spread. The technique presents new opportunities for characterizing source populations and for targeting of HIV-1 prevention interventions in Africa

    Perinatal inflammation influences but does not arrest rapid immune development in preterm babies

    Get PDF
    Infection and infection-related complications are important causes of death and morbidity following preterm birth. Despite this risk, there is limited understanding of the development of the immune system in those born prematurely, and of how this development is influenced by perinatal factors. Here we prospectively and longitudinally follow a cohort of babies born before 32 weeks of gestation. We demonstrate that preterm babies, including those born extremely prematurely (<28 weeks), are capable of rapidly acquiring some adult levels of immune functionality, in which immune maturation occurs independently of the developing heterogeneous microbiome. By contrast, we observe a reduced percentage of CXCL8-producing T cells, but comparable levels of TNF-producing T cells, from babies exposed to in utero or postnatal infection, which precedes an unstable post-natal clinical course. These data show that rapid immune development is possible in preterm babies, but distinct identifiable differences in functionality may predict subsequent infection mediated outcomes

    Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns.

    Get PDF
    Many genes important in immunity are found as multigene families. The butyrophilin genes are members of the B7 family, playing diverse roles in co-regulation and perhaps in antigen presentation. In humans, a fixed number of butyrophilin genes are found in and around the major histocompatibility complex (MHC), and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region), and another single gene on a different chromosome. There is a precise cell and tissue expression for each gene, but overall there are two kinds, those expressed by haemopoietic cells and those expressed in tissues (presumably non-haemopoietic cells), correlating with two different kinds of promoters and 5' untranslated regions (5'UTR). However, the multigene family in the BG region contains many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within the BG region. Thus, the BG genes in chickens are undergoing much more rapid evolution compared to their homologues in mammals, for reasons yet to be understood.This is the final published version. It was originally published by PLOS in PLOS Genetics here: http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004417

    Quantifying HIV transmission flow between high-prevalence hotspots and surrounding communities: a population-based study in Rakai, Uganda

    Get PDF
    Background International and global organisations advocate targeting interventions to areas of high HIV prevalence (ie, hotspots). To better understand the potential benefits of geo-targeted control, we assessed the extent to which HIV hotspots along Lake Victoria sustain transmission in neighbouring populations in south-central Uganda. Methods We did a population-based survey in Rakai, Uganda, using data from the Rakai Community Cohort Study. The study surveyed all individuals aged 15–49 years in four high-prevalence Lake Victoria fishing communities and 36 neighbouring inland communities. Viral RNA was deep sequenced from participants infected with HIV who were antiretroviral therapy-naive during the observation period. Phylogenetic analysis was used to infer partial HIV transmission networks, including direction of transmission. Reconstructed networks were interpreted through data for current residence and migration history. HIV transmission flows within and between high-prevalence and low-prevalence areas were quantified adjusting for incomplete sampling of the population. Findings Between Aug 10, 2011, and Jan 30, 2015, data were collected for the Rakai Community Cohort Study. 25 882 individuals participated, including an estimated 75·7% of the lakeside population and 16·2% of the inland population in the Rakai region of Uganda. 5142 participants were HIV-positive (2703 [13·7%] in inland and 2439 [40·1%] in fishing communities). 3878 (75·4%) people who were HIV-positive did not report antiretroviral therapy use, of whom 2652 (68·4%) had virus deep-sequenced at sufficient quality for phylogenetic analysis. 446 transmission networks were reconstructed, including 293 linked pairs with inferred direction of transmission. Adjusting for incomplete sampling, an estimated 5·7% (95% credibility interval 4·4–7·3) of transmissions occurred within lakeside areas, 89·2% (86·0–91·8) within inland areas, 1·3% (0·6–2·6) from lakeside to inland areas, and 3·7% (2·3–5·8) from inland to lakeside areas. Interpretation Cross-community HIV transmissions between Lake Victoria hotspots and surrounding inland populations are infrequent and when they occur, virus more commonly flows into rather than out of hotspots. This result suggests that targeted interventions to these hotspots will not alone control the epidemic in inland populations, where most transmissions occur. Thus, geographical targeting of high prevalence areas might not be effective for broader epidemic control depending on underlying epidemic dynamics. Funding The Bill & Melinda Gates Foundation, the National Institute of Allergy and Infectious Diseases, the National Institute of Mental Health, the National Institute of Child Health and Development, the Division of Intramural Research of the National Institute for Allergy and Infectious Diseases, the World Bank, the Doris Duke Charitable Foundation, the Johns Hopkins University Center for AIDS Research, and the President's Emergency Plan for AIDS Relief through the Centers for Disease Control and Prevention

    Projected outcomes of universal testing and treatment in a generalised HIV epidemic in Zambia and South Africa (the HPTN 071 [PopART] trial): a modelling study

    Get PDF
    Background The long-term impact of universal home-based testing and treatment as part of universal testing and treatment (UTT) on HIV incidence is unknown. We made projections using a detailed individual-based model of the effect of the intervention delivered in the HPTN 071 (PopART) cluster-randomised trial. Methods In this modelling study, we fitted an individual-based model to the HIV epidemic and HIV care cascade in 21 high prevalence communities in Zambia and South Africa that were part of the PopART cluster-randomised trial (intervention period Nov 1, 2013, to Dec 31, 2017). The model represents coverage of home-based testing and counselling by age and sex, delivered as part of the trial, antiretroviral therapy (ART) uptake, and any changes in national guidelines on ART eligibility. In PopART, communities were randomly assigned to one of three arms: arm A received the full PopART intervention for all individuals who tested positive for HIV, arm B received the intervention with ART provided in accordance with national guidelines, and arm C received standard of care. We fitted the model to trial data twice using Approximate Bayesian Computation, once before data unblinding and then again after data unblinding. We compared projections of intervention impact with observed effects, and for four different scenarios of UTT up to Jan 1, 2030 in the study communities. Findings Compared with standard of care, a 51% (95% credible interval 40–60) reduction in HIV incidence is projected if the trial intervention (arms A and B combined) is continued from 2020 to 2030, over and above a declining trend in HIV incidence under standard of care. Interpretation A widespread and continued commitment to UTT via home-based testing and counselling can have a substantial effect on HIV incidence in high prevalence communities. Funding National Institute of Allergy and Infectious Diseases, US President's Emergency Plan for AIDS Relief, International Initiative for Impact Evaluation, Bill & Melinda Gates Foundation, National Institute on Drug Abuse, and National Institute of Mental Health

    Inferring HIV-1 transmission networks and sources of epidemic spread in Africa with deep-sequence phylogenetic analysis

    Get PDF
    To prevent new infections with human immunodeficiency virus type 1 (HIV-1) in sub-Saharan Africa, UNAIDS recommends targeting interventions to populations that are at high risk of acquiring and passing on the virus. Yet it is often unclear who and where these ‘source’ populations are. Here we demonstrate how viral deep-sequencing can be used to reconstruct HIV-1 transmission networks and to infer the direction of transmission in these networks. We are able to deep-sequence virus from a large population-based sample of infected individuals in Rakai District, Uganda, reconstruct partial transmission networks, and infer the direction of transmission within them at an estimated error rate of 16.3% [8.8–28.3%]. With this error rate, deep-sequence phylogenetics cannot be used against individuals in legal contexts, but is sufficiently low for population-level inferences into the sources of epidemic spread. The technique presents new opportunities for characterizing source populations and for targeting of HIV-1 prevention interventions in Africa

    The ethics of instantaneous contact tracing using mobile phone apps in the control of the COVID-19 pandemic

    No full text
    In this paper we discuss ethical implications of the use of mobile phone apps in the control of the COVID-19 pandemic. Contact tracing is a well-established feature of public health practice during infectious disease outbreaks and epidemics. However, the high proportion of pre-symptomatic transmission in COVID-19 means that standard contact tracing methods are too slow to stop the progression of infection through the population. To address this problem, many countries around the world have deployed or are developing mobile phone apps capable of supporting instantaneous contact tracing. Informed by the on-going mapping of ‘proximity events’ these apps are intended both to inform public health policy and to provide alerts to individuals who have been in contact with a person with the infection. The proposed use of mobile phone data for ‘intelligent physical distancing’ in such contexts raises a number of important ethical questions. In our paper, we outline some ethical considerations that need to be addressed in any deployment of this kind of approach as part of a multidimensional public health response. We also, briefly, explore the implications for its use in future infectious disease outbreaks

    Epidemiological changes on the Isle of Wight after the launch of the NHS Test and Trace programme: a preliminary analysis

    No full text
    Background In May 2020, the UK National Health Service (NHS) Test and Trace programme was launched in England in response to the COVID-19 pandemic. The programme was first rolled out on the Isle of Wight and included version 1 of the NHS contact tracing app. The aim of the study was to make a preliminary assessment of the epidemiological impact of the Test and Trace programme using publicly available data. Methods We used COVID-19 daily case data from Public Health England to infer incidence of new infections and estimate the reproduction number (R) for each of the 150 Upper-Tier Local Authorities (UTLAs) in England and nationally, before and after the launch of the Test and Trace programme on the Isle of Wight. We used Bayesian and maximum-likelihood methods to estimate R and compared the Isle of Wight with other UTLAs using a synthetic control method. Findings We observed significant decreases in incidence and R on the Isle of Wight immediately after the launch of the Test and Trace programme. The Isle of Wight had a marked reduction in R, from 1·3 before the Test and Trace programme to 0·5 after by one of our measures, and went from having the third highest R before the Test and Trace programme, to the twelfth lowest afterwards compared with other UTLAs. Interpretation Our results show that the epidemic on the Isle of Wight was controlled quickly and effectively after the launch of Test and Trace. Our findings highlight the need for further research to determine the causes of the reduction in the spread of the disease, as these could be translated into local and national non-pharmaceutical intervention strategies in the period before a treatment or vaccination for COVID-19 becomes available. Funding Li Ka Shing Foundation and UK Economic and Social Research Council
    corecore