16,438 research outputs found

    The Case for UHP Conditions in the Cuaba Terrane, Río San Juan Metamorphic Complex, Dominican Republic

    Get PDF
    From the Cuaba terrane in northern Dominican Republic. Ultrahigh pressure (UHP) conditions are indicated for the Cuaba terrane on the basis of phase relationships in garnet-bearing ultramafic rock. Dikes and orthocumulate textures indicate a magmatic origin. Mineral assemblages define a line of descent controlled by fractional crystallization. The original estimate of the magmatic conditions (P>3.4GPa, T>1550°C) was inferred previously from available high-P melting experiments in the CMAS system and high-P experimental determination of the sapphirine-out reaction in the MAS system. Revised estimates of magmatic conditions (P>3.2GPa, T>1500°C) take into account the influence of other components, especially Fe. We propose an origin in the mantle-wedge above a subduction zone. The rock was delivered to the subduction zone by forced convection in the mantle wedge (corner-flow), coupled with erosion of the hanging wall. Thermobarometry indicates >850°C and >3.4GPa when the ultramafic rock was incorporated into eclogite (deep-subducted oceanic crust). Evidence for UHP conditions in the retrograded eclogite is not obvious. Two types of symplectic intergrowths, plagioclase + clinopyroxene (Sym-I) and plagioclase + epidote (Sym-II), are interpreted as the products of the decomposition of two types of omphacite, Omp-I and Omp-II. Theoretically, Omp-II formed as the result of a retrograde reaction of the form, Omp-II + coesite = Omp-I + kyanite + /- garnet, according to which the maximum pressure for Omp-II is between ~2.8GPa (~850°C) and ~4.2GPa (~950°C), consistent with subsolidus conditions for the garnet-bearing ultramafic rocks. For eclogite, the highest-pressure mineral assemblage would have been Omp-I + kyanite + garnet + coesite

    Energy density and pressure of long wavelength gravitational waves

    Get PDF
    Inflation leads us to expect a spectrum of gravitational waves (tensor perturbations) extending to wavelengths much bigger than the present observable horizon. Although these gravity waves are not directly observable, the energy density that they contribute grows in importance during the radiation- and dust-dominated ages of the universe. We show that the back reaction of tensor perturbations during matter domination is limited from above, since gravitational waves of wavelength λ\lambda have a share of the total energy density Δρ(λ)/ρ\Delta \rho(\lambda)/\rho during matter domination that is at most equal to the share of the total energy density that they had when the mode λ\lambda exited the Hubble radius H1H^{-1} during inflation. This work is to be contrasted to that of Sahni, who analyzed the energy density of gravity waves only insofar as their wavelengths are smaller than H1H^{-1}. Such a cut-off in the spectral energy of gravity waves leads to the breakdown of energy conservation, and we show that this anomaly is eliminated simply by taking into account the energy density and pressure of long wavelength gravitational waves as well as short wavelength ones.Comment: Updated one reference; 17 pages, no figure

    The path to the enhanced and advanced LIGO gravitational-wave detectors

    Full text link
    We report on the status of the Laser Interferometric Gravitational-Wave Observatory (LIGO) and the plans and progress towards Enhanced and Advanced LIGO. The initial LIGO detectors have finished a two year long data run during which a full year of triple-coincidence data was collected at design sensitivity. Much of this run was also coincident with the data runs of interferometers in Europe, GEO600 and Virgo. The joint analysis of data from this international network of detectors is ongoing. No gravitational wave signals have been detected in analyses completed to date. Currently two of the LIGO detectors are being upgraded to increase their sensitivity in a program called Enhanced LIGO. The Enhanced LIGO detectors will start another roughly one year long data run with increased sensitivity in 2009. In parallel, construction of Advanced LIGO, a major upgrade to LIGO, has begun. Installation and commissioning of Advanced LIGO hardware at the LIGO sites will commence at the end of the Enhanced LIGO data run in 2011. When fully commissioned, the Advanced LIGO detectors will be ten times as sensitive as the initial LIGO detectors. Advanced LIGO is expected to make several gravitational wave detections per year.Comment: 11 pages, 5 figure

    Searches for Gravitational Waves from Binary Neutron Stars: A Review

    Full text link
    A new generation of observatories is looking for gravitational waves. These waves, emitted by highly relativistic systems, will open a new window for ob- servation of the cosmos when they are detected. Among the most promising sources of gravitational waves for these observatories are compact binaries in the final min- utes before coalescence. In this article, we review in brief interferometric searches for gravitational waves emitted by neutron star binaries, including the theory, instru- mentation and methods. No detections have been made to date. However, the best direct observational limits on coalescence rates have been set, and instrumentation and analysis methods continue to be refined toward the ultimate goal of defining the new field of gravitational wave astronomy.Comment: 30 pages, 5 Figures, to appear in "Short-Period Binary Stars: Observations, Analyses, and Results", Ed.s Eugene F. Milone, Denis A. Leahy, David W. Hobil

    The vanishing ideal of a finite set of points with multiplicity structures

    Full text link
    Given a finite set of arbitrarily distributed points in affine space with arbitrary multiplicity structures, we present an algorithm to compute the reduced Groebner basis of the vanishing ideal under the lexicographic ordering. Our method discloses the essential geometric connection between the relative position of the points with multiplicity structures and the quotient basis of the vanishing ideal, so we will explicitly know the set of leading terms of elements of I. We split the problem into several smaller ones which can be solved by induction over variables and then use our new algorithm for intersection of ideals to compute the result of the original problem. The new algorithm for intersection of ideals is mainly based on the Extended Euclidean Algorithm.Comment: 12 pages,12 figures,ASCM 201

    One Loop Back Reaction On Power Law Inflation

    Get PDF
    We consider quantum mechanical corrections to a homogeneous, isotropic and spatially flat geometry whose scale factor expands classically as a general power of the co-moving time. The effects of both gravitons and the scalar inflaton are computed at one loop using the manifestly causal formalism of Schwinger with the Feynman rules recently developed by Iliopoulos {\it et al.} We find no significant effect, in marked contrast with the result obtained by Mukhanov {\it et al.} for chaotic inflation based on a quadratic potential. By applying the canonical technique of Mukhanov {\it et al.} to the exponential potentials of power law inflation, we show that the two methods produce the same results, within the approximations employed, for these backgrounds. We therefore conclude that the shape of the inflaton potential can have an enormous impact on the one loop back-reaction.Comment: 28 pages, LaTeX 2 epsilo

    Electron-deuteron scattering in the equal-time formalism: beyond the impulse approximation

    Full text link
    Using a three-dimensional formalism that includes relativistic kinematics, the effects of negative-energy states, approximate boosts of the two-body system, and current conservation, we calculate the electromagnetic form factors of the deuteron up to Q^2 of 4 GeV^2. This is done using a dynamical boost for two-body systems with spin. We first compute form factors in impulse approxmation, but then also add an isoscalar meson-exchange current of pion range that involves the gamma-pi contact operator associated with pseudovector pi-N coupling. We also consider effects of the rho-pi-gamma meson-exchange current. The experimentally measured quantities A, B, and t20 are calculated over the kinematic range probed in recent Jefferson Laboratory experiments. The rho-pi-gamma meson-exchange current provides significant strength in A at large Q^2 and the gamma-pi contact-term exchange current shifts t20, providing good agreement with the JLab data. Relativistic effects and the gamma-pi meson-exchange current do not provide an explanation of the B observable, but the rho-pi-gamma current could help to provide agreement if a nonstandard value is used for the tensor rho-N coupling that enters this contribution.Comment: 15 pages, 10 figures. (v2) Added references on rho-pi-gamma current as well as comparison to recent Novosibirsk data on T20. Implemented \includegraphics in place of \BoxedEPSF. (v3) Modified in order to clarify the nature of the boost we implemented for particles with spin. Other minor changes. Version to be published in Physical Review

    A hybrid genetic algorithm for resolving closely spaced objects

    Get PDF
    A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented

    The Critical Coupling Likelihood Method: A new approach for seamless integration of environmental and operating conditions of gravitational wave detectors into gravitational wave searches

    Get PDF
    Any search effort for gravitational waves (GW) using interferometric detectors like LIGO needs to be able to identify if and when noise is coupling into the detector's output signal. The Critical Coupling Likelihood (CCL) method has been developed to characterize potential noise coupling and in the future aid GW search efforts. By testing two hypotheses about pairs of channels, CCL is able to identify undesirable coupled instrumental noise from potential GW candidates. Our preliminary results show that CCL can associate up to 80\sim 80% of observed artifacts with SNR8SNR \geq 8, to local noise sources, while reducing the duty cycle of the instrument by 15\lesssim 15%. An approach like CCL will become increasingly important as GW research moves into the Advanced LIGO era, going from the first GW detection to GW astronomy.Comment: submitted CQ
    corecore