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Abstract

In this paper we present an object detection system based on YOLOv2 and transfer
learning which is compared to Keras faster RCNN. We evaluate our systems using two
infrared datasets: a small dataset of low resolution thermal images and a large dataset of
high resolution thermal images both containing the object classes; people and land ve-
hicles. Both detectors are trained on the large dataset of high resolution thermal images
and tested using the low resolution images. Fine tuning on the small dataset is imple-
mented to increase the accuracy of the detectors. This research will be of great interest
to the defence community as they could save a lot of time and money collecting and
annotating data.

1. Introduction

The security and defence industry is becoming increasingly reliant on intelligent signal
processing methods to achieve 24 hour surveillance capabilities. The military are one of
the largest applications for computer vision. This includes detection of enemy soldiers,
vehicles and guiding missiles. Modern military concepts such as “battlefield awareness”,
use various sensors, including image sensors, to provide information about a combat scene
which can be used to support strategic decisions. By developing computer vision with 24
hour surveillance we can reduce the burden on human operators thereby allowing them
to make safer decisions.

The first obstacle in developing 24 hour surveillance is localising and classifying objects
in images i.e. object detection. Infrared images can be used in these systems as they
provide data in the day, night and in low visibility. Normally detection systems are
are trained and evaluated in controlled conditions in high resolution images so real life
object detection is difficult due to occlusion, clutter, low-resolution images and long-
range targets. The most popular solution to the problem of object detection is using
deep convolutional neural networks due to unprecedented performance. However, there is
a lack of research that involves object detection in infrared images and under operational
conditions which are required for 24 hour surveillance systems.

Twenty-four hour surveillance systems require accurate object detectors. Object de-
tection systems require a large annotated training dataset to achieve high accuracies.
This is because CNNs do not typically generalize well to data not present in the training
set. We therefore need a large dataset in order to get as many different angles/views of
objects in as many different situations as possible. These datasets are extremely expen-
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Figure 1. Network diagram of Transfer learning and fine tuning process. A large dataset of
high resolution images are trained on Keras FRCNN and YOLOv2. All the weights produced
are reused and a small dataset of low resolution images are trained on top in a process called
fine tuning. The system is then ready to be tested on the low resolution images.

sive to collect in both money and time, especially for those in defence who heavily rely
on these systems. This makes it very difficult to collect enough realistic data to train a
neural network from scratch to obtain accurate results. Transfer learning is a solution
to this problem as it requires only a small dataset of images. Transfer learning involves
training a CNN on a very large dataset, then extracting the features produced in the
convolutional layers, and finally training a new model on these extracted features using
a small dataset in a process called fine tuning. This technique shows impressive results
on a number of vision tasks as shown in Donahue et al. and is adapted in this paper for
a new domain (ATR) and sensor (LWIR). The theory behind Transfer learning is that
low level features which have been learned through training are the same for all objects.
Therefore these features can be used to help classify new objects and exisiting objects
in different resolution images. When applying transfer learning to different resolution
images, the weights need to be adapted to compensate for the different size of images.

It is in this context that we propose the use of transfer learning to adapt two state-of-
art object detectors (Keras faster RCNN and YOLOv2) to low resolution images with the
future aim of developing a 24 hour surveillance system. Keras faster RCNN (FRCNN)
and YOLOv2 are robust to training on different sized images and so learning across
different resolution images allows successful classification without further costly and time
consuming work to change the weights.

We take as our starting point the weights from an object detector trained on a pre-
existing large dataset of high resolution infrared images and re-train the model with a
very small dataset of low resolution infrared images. A diagram depicting this set-up is
shown in Figure 1. Our work would be of significant interest to the military as accurate
and low cost object detection systems are crucial.

2. Related Work

In the past hand crafted models such as Bag of Words were very popular for visual
recognition. However, deep learning has clearly surpassed these conventional methods.
Deep learning is used in a diverse number of areas such as in driver-less cars, medicine
(Greenspan et al.) and astrophysics (Baldi et al.). It can be thought of as a subfield of ma-
chine learning which is able to learn complex and hierarchical representations from raw
data. In the modern era of deep learning, complex architectures have won many computer
recognition challenges and have surpassed previously unattainable performance with re-



RELATED WORK 3
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Figure 2. Images a) and b) were taken with the Foxhound camera (resolution of 320x240)
and c) and d) were taken with Catherine MP (resolution 1280x1024)

gards to localization, classification, detection, tracking, pose estimation, segmentation
or image captioning with respect to other older methods. The success of deep learning
has been made possible by the increase in computational resources such as open source
libraries, GPUs and the increase of labeled data. In 2012 Krivhesky et al. created a large
and deep convolutional neural network which won the ImageNet large-scale visual Recog-
nition challenge. This CNN had a top five error rate of 15.4% which was significantly
lower than previous years and 10.8% lower than the next best entry that year. In 2014
Simonyan et al. created a convolutional neural network with 19 layers after investigating
the effect of depth on the accuracy in image recognition tasks. This model achieved 7.3%
error rate and was influential as it highlighted that networks need to be deep in order
for hierarchical representations of visual data to be successful.

Object detection is a more difficult problem than object classification or recognition
and requires greater computational power. Regions with convolutional neural networks
(RCNN) by Girshick et al.(2013) was one of the first systems to combine object local-
isation and classification tasks. It uses selective search to bound an object in an image
(region proposal) and then a CNN is used to classify. This detector works well but is
slow because for every image there are multiple region proposals and each has to go
through the CNN to be classified. Fast-R-CNN Girshick et al.(2015) solves this problem
by running the CNN computation once and then sharing the information across all the
region proposals. Although this increased the speed, the region propsal method was still
slow. Fatser R-CNN was created to solve this issue. Region propsals depend on features
which are calculated through the CNN. The insight with faster R-CNN was to use the
CNN results for region propsals.

YOLO is a new object detector by Redmon et al. (2015). It combines object local-
ization and classification into one neural network to produce bounding boxes and class
probabilities for objects in images. The architecture works in real-time at 45 frames per
second. FAST YOLO, which is a smaller version of the network can achieve 155 frames
per second. YOLO makes more localisation errors compared to other state-of-the-art sys-
tems Redmon et al. (2015) but is less likely to predict a false positive in the background of
the image. YOLO outperforms other detection methods such as deformable parts model
(DPM) and R-CNN when generalizing from natural images to other domains.

An extension of YOLO, called YOLOv2, is proposed in Redmon et al. (2016) and
provides both higher accuracy and faster performance. This is achieved by increasing
the resolution, applying batch normalisation and multi-scale training, optimising the
dimension clusters and using anchor boxes during the convolution. Interestingly, training
the classifier on high resolution images increases the mAP by nearly 4%. YOLOv2 is
trained to detect objects across a variety of input resolutions defined every 10 batches
by choosing a different image resolution. The resulting network is then resized to that
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dimension and training is continued. Therefore, YOLO is robust to running on images
of different sizes.

There is a lot of work using deep neural networks (DNNs) for face recognition using
thermal images for example, in Peng et al.. However, there is a lack of research using
thermal images for object detection. Rodger et al. (2016) develops a CNN trained on
short-mid range high resolution infrared images (taken on Thales Catherine MP thermal
imager) containing the following objects classes; person, land-vehicle, helicopter, aero-
plane, unmanned aerial vehicle and false alarm. This network was successful at classifying
other short-mid range objects in unseen images but struggled to generalize to long range
targets which indicated problems identifying targets in low resolution conditions. Their
solution was to introduce a new long-range class and train the network again. They
achieve accuracies of 95.7%. We aim to build upon this area of research, address the lack
of work using infrared images in detection and expand it to low resolution imagery.

3. Experiments

3.1. Datasets

Two different datasets are used in this paper to validate our proposal:
(a) A large dataset of high resolution images taken on Thales thermal imager Catherine

MP. This data consists of around 3200 images of people and land vehicles taken at long
range from a look down perspective. Partial and total occlusions by trees and building
are present in the data. The data also contains images of vehicles traveling along a road
at long range from a face on perspective.

(b) A small dataset of low resolution images taken by the universally deployed Thales
Foxhound thermal imager. These images show close and long range people in indoor
and outdoor scenes as well as some close range images of cars and vans. There are
approximately 700 images in total.
The Catherine MP dataset will be used to train the system while the Foxhound data will
be used for fine tuning and to validate the performance.

3.2. Method

In this paper, we evaluate the accuracies of object detection using a small dataset of
low resolution images and transfer learning. We train two detectors, Keras faster RCNN
(FRCNN) and YOLOv2 on a large dataset of high resolution images and then use fine
tuning to increase the accuracy for testing on the low resolution images. The weights
from all the layers in the networks trained on the high resolution images are used as
the objects in the low resolution images are the same. YOLOv2 starts training with a
weights file pre-trained on the ImageNet dataset. Keras Faster RCNN starts training
from scratch.

3.3. Architecture of Keras FRCNN and YOLOv2

YOLOv2 is a light-weight architecture as it uses a convolutional network for both local-
isation and classification. The classifier part of the network is called darknet-19 which
consists of 19 convolutional layers and 5 max pooling layers. Darknet-19 is trained on
the ImageNet for 160 epochs at resolution 224x224. Standard data augmentation tricks
are used such as saturation/hue etc. The network is then fine-tuned for 10 epochs on
resolution 448x448. When training for detection the network is modified by removing
the last convolutional layer and replacing it with three 3x3 convolutional layers (with
1024 filters) and one 1x1 convolutional layer with the number of outputs for detection.
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Fatser RCNN, uses the VGG-16 model to classify the objects and 3 additional layers for
region proposals. YOLOv2 has the most efficient architecture as it frames detection as a
regression problem and doesn’t require such a complex structure that Faster RCNN has.
The two detection systems use different loss functions to optimize the weights produced.
YOLOv2’s cost function simultaneously solves for object localisation and classification
tasks. The following cost function is used:

loss = λcoord

S2∑
i=0

B∑
j=0

1objij (xi − x̂i)2 + (yi − ŷi)2 (3.1)

+λcoord

S2∑
i=0

B∑
j=0

1objij (
√
wi −

√
ŵi)

2 + (
√
hi −

√
ĥi)

2 +

S2∑
i=0

B∑
j=0

1objij (Ci − Ĉi)
2 (3.2)

+λnoobj

S2∑
i=0

B∑
j=0

1noobjij (Ci − Ĉi)
2 +

S2∑
i=0

1obji

∑
c∈classes

(pi(c)− p̂i)2 (3.3)

The sum squared error is used in this cost function as it is easy to optimize. The first
two terms calculate the error of the bounding boxes. 1objij equals 1 if the jth bounding box
predictor in cell i is responsible for that detection. The x and y are the coordinates of the
bounding box, and w and h are the width and height respectively. In order to reflect that
small deviations in large boxes matter less than small boxes, the square root of the width
and heights are taken. The third and fourth terms penalize the difference in confidence
of having an object in the grid, and the final term is penalizing the difference in class
probability. The parameters λcoord and λnoobj are equal to 5 and 0.5 respectively. The
value of λcoord is to ensure a larger contribution of the bounding box and classification
error to the overall cost function, and λnoobj is set to penalize less for the confidence of

identifying an object when there is not one present. The value 1obji equals 1 if an object
appears in cell. S2 represents the number of cells that YOLOv2 splits the image into for
the detection process.

In faster RCNN a binary class label is assigned to each anchor describing if an object is
present or not. A positive label is assigned to the anchor which has the biggest intersection
over union (IoU) with the ground truth or an anchor which has a IoU of > 0.7. A negative
label is given to an anchor if its IoU is less that 0.3 for all ground truth. The other anchors
do not contribute. Using these rules, Faster RCNN minimizes the following loss function:

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p̂i) + λ
1

Nreg

∑
i

p̂iLreg(ti, t̂i) (3.4)

In this loss function, i represents the index of an anchor in a mini-batch and pi is the
predicted probability of anchor i being an object. The value p̂i is the ground truth label
and t̂i represents the vector containing the four coordinates of the bounding boxes. Lcls

is the log loss over the two classes; object verses not object. Lreg is the regression loss

and Lreg = R(ti − t̂i) where R is the robust loss function smooth L1:

smoothL1(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(3.5)
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4. Results

Both object detectors were initially trained on the Catherine MP dataset and tested on
the Foxhound dataset. Then a small subset of around 200 of the Foxhound images were
used for fine tuning. The results are discussed in the following subsections.

4.1. YOLOv2 Results

YOLOv2 which was pre-trained on ImageNet was trained for one day on Catherine MP
data, going through 90000 iterations altogether. A weights file is saved every 10000 itera-
tions. After testing the precision at each of the iterations, the highest precision produced
on the Catherine MP test set was 92% and 52% was achieved on the Foxhound test set.
This result of 52% is a good starting precision considering how different the datasets
are. When analysing the errors and miss-detections, the following challenges were dis-
covered: a) YOLOv2 does not correctly classify close up images of people. It confuses
them with land vehicles and in some cases does not register there is an object present as
seen in Figure 11. b) Objects not present in the training data such as a wheel barrow,
hoover and a person on a chair all are mistaken for land vehicles, also shown in Figure 11.

To overcome these initial misclassifications, fine tuning was implemented and YOLOv2
was trained with around 200 Foxhound images. The test set precision of Foxhound images
increased to 84%. Figure 12 shows these results. As you can see from Figure 11 the results
have greatly improved, however, the hoover is still being classified as a land vehicle,
although this is understandable as it is a new class not present in the training data. The
main improvement this fine tuning process made are that close range images of people
are now being classified correctly and precision has significantly increased.

4.2. Results from Keras faster RCNN

After one week of training Keras FRCNN initially gives an mAP of 83% on the Catherine
MP test set and 26% on the Foxhound test set. This initial low performance in both the
high and low resolution images in comparison to YOLOv2 could be explained by the
lack of pre-training in other images as it is trained from scratch in Catherine MP. After
fine-tuning was implemented, the Foxhound test set mAP is raised to 87%. Figure 12
shows a chart of the results.

5. Discussion

Our results show that Keras FRCNN is the marginally better detector with a mean aver-
age precision of 87% compared to 84% with YOLOv2. While the accuracy of these detec-
tors could be improved, these results are promising considering how small the datasets
were in comparison to other research (which use tens of thousands of images for training),
and the fact the datasets were taken in different locations and at different ranges. These
results are a starting point to develop this research and make the detection system better.
They also show that transfer learning followed by fine tuning produces good results from
real world data in low resolution.

YOLOv2’s strength is that it is significantly quicker to train. YOLOv2 took one day
to train in comparison to Keras faster RCNN which took five days to train to a suitable
test set accuracy. Therefore although Keras faster RCNN is 3% more accurate, YOLOv2
is the better detector as it is much faster to train.
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Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11. This Figure shows Foxhound images that have been tested on YOLOv2 trained on
Catherine MP images before (left hand side) and after (right hand side) fine tuning (on a small
set of Foxhound images). Before fine tuning the person on a chair in Figure 4), the people in
Figure 8) and the hoover in Figure 9) are all classified incorrectly as land vehicles. After fine
tuning the person on a chair and all the people are correctly classified as people and not land
vehicle. The hoover, however, is still being classified as a land-vehicle.
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Figure 12. Mean average precision results for Keras FRCNN and YOLOv2 tested on
Foxhound images after training on Catherine MP images.

6. Conclusion

The originality of our work lies in focusing on tasks with a small infrared dataset. We
show one large dataset can be used for pre-training for other small datasets of different
resolution producing high accuracies. This will save a lot of time and money collecting
and annotating large datasets. This work is important as one of the reasons Computer
Vision tasks cannot accurately classify objects is due to a lack of training data. This
paper will be interesting for the defence community as it shows how transfer learning in
combination with modern off-the-shelf object detectors based on DNNs can be applied for
surveillance and military applications in thermal imagery. Although the accuracy may not
be as high as when training on a large dataset, this study is interesting because shows the
trade off there is between speed(using small datasets) and accuracy(using large datasets).

6.1. Future Work

We propose to increase the accuracy of YOLOv2 by designing a novel cost function to re-
duce the number of false positives produced and to improve the transfer learning process.
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