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i A hybrid genetic algorithm is

:, described for performing the difficult
optimization task of resolving closely-
spaced objects appearing in space-

' based and ground-based surveillance
I

data. This application of genetic algo-
rithms is unusual in that it uses a pow-

_ erful domain-specific operation as a
genetic operator. Results of applying
the algorithm to real data from tele-

£

scopic observations of a star field are
presented.

1.0 Introduction

Extracting information on individual visual
point sources in a closely-spaced object (CSO)

cluster is a fundamental problem for such ap-
plications as astronomy and ballistic missile
defense. The problem is difficult because ob-
jects within closely-spaced object clumps can-
not be resolved directly. Instead, one hypothe-

sizes overlapping point sources to create a
model of the clump. Then one parametrically
solves for the number of sources along with
their amplitudes and locations.

An objective function is formed based on the
sum of the squared residual errors between the
data and model employed in Bayes' Theorem.

This Bayesian approach has been described by
[Sc93] and[Li94]. The best model is that which
minimizes the residual errors and thus maxi-
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mizes the probability that the model repre_nts
the data.

This estimation approach presents a difficult

optimization task since the probability func-

tion to be maximized is rugged, i.e., has many
local maxima.

Traditional approaches were found to be inade-

quate to solve this problem. Hill-climbing

techniques were found to be highly dependent

upon the initialization of the parameters; dif-
ferent solutions would be obtained from differ-

ent initial guesses. Further, convergence was

often slow, prohibitively so when the number

of sources in the closely-spaced object clump
reached four or more. To avoid these deficien-

cies, we developed a hybrid genetic algorithm.

The remainder of this paper is organized as

follows. Section 2 describes the problem in

slightly more detail. Section 3 provides an

overview of genetic algorithms. Section 4 de-

scribes the genetic algorithm developed for the

CSO problem. Section 5 presents our results.

2.0 Problem Statement

Every optical system has a point response
function (PRF), which is the image generated
by a sensor from a point source located at in-
finity. The PRF width is due to diffraction of
the input radiation through the system aperture
and the presence of aberrations in the optical
system. Because their geometrical angular
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subtense is much less than the width of the

sensor PRF, many objects viewed by optical

sensors, such as stars or distant space vehicles,

appear as point sources.

If multiple point sources are located within the

resolution limit of the sensor, the optical sys-

tem will produce an image which appears as a

clump. The objects in this case are referred to

as a cluster of closely-spaced objects. The indi-

vidual source amplitudes and locations deter-

mine the amount of overlap between the re-

sponses and thus the shape of the clump. Giv-

en the input clump of data and knowledge of

the PRF, the sensor processing software must

properly count and recover location and ampli-

tude information of the individual objects.

3.0 Overview of Genetic

Algorithms
The term Genetic Algorithms [Ho75] includes

a broad class of iterative optimization tech-

niques that employ methods that are modelled

after the way evolution occurs by natural se-

lection in biological systems.

3.1 The Genetic Algorithm
A genetic algorithm begins with a set of (sub-

optimal) solutions, called a population. The

initial population may be arbitrarily or ran-

domly chosen, or it may be given as an exter-

nal input.

An application-specific objective function is

applied to each member of the population,

thereby ranking the solutions.

The following selection/transformation/re-

placement cycle is repeated until a termination

condition is met. (See Figure 1.)

1. Selection. Select one or more elements

from the population using the following

rule: the higher an element's score on the

objective function, the more likely it is to be
selected.
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Figure 1. A generic genetic algorithm

2. Transformation. Modify the selected ele-

ment or elements to produce a new, possibly

higher rankedelement. The operators used

to modify the elements are called genetic

operators.

• A single element may be modified in a

process called mutation.

• Two or more elements may be combined

to produce a new element. The process of
combination can create new elements

that combine the best attributes of their

predecessors in ways that are very un-

likely under purely random stochastic

methods. This is widely considered as

one of the sources of the efficiency and

broad applicability of genetic algorithms.

3. Replacement. Put the new element back

into the population, replacing some element

currently in the population. The higher a

population element's score on the objective

function, the less likely it will be selected to

be replaced.

When the process terminates, the best ranked

solution is the reported solution.

Genetic algorithms have been successfully ap-

plied to a wide range of optimization problems

including the travelling salesman problem

[Gr85], communication network design

[Da87], natural gas pipeline control [Go83],
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image processing [Fi84], and training artificial

neural networks [Wh89].

3.2 Hybrid GenetleAlgorlthms

As originally formulated, genetic algorithms

were applied strictly to populations of fixed-

length bit strings. All problem-specific infor-
mation was encoded as bits. Within that frame-

work, there are two genetic operators: muta-

tion and crossover. The mutation operator

changes one of the bits of the element to which

it is applied. The crossover operator creates a

new element by selecting, for each bit position,

a bit in that position from the parents.
1.

Hybrid genetic algorithms [Da91] move away

from the bitstring representation in two ways.

1. Population elements are represented in

ways that may be specific to the problem

domain. Any data structure is allowed. 2.

2. Genetic operators are defined which operate

on the elements as represented. The primary

operations are still generically mutation

(change a single population element) and

combination (combine pieces of multiple

population elements to produce a new ele-

ment). But mutation and combination are

now tailored to the particular problem. 3.

4.0 Application of Genetic
Algorithms to the CSO
Problem

In our application of hybrid genetic algo-

rithms, we are searching for a set of objects at

particular positions such that those objects

would generate the given image. Since the

number of objects to be resolved is unknown,

the number of objects represented by each

population element is not fixed. The positions

of the objects are also unknown. The objective

of the GA is to find both the number and place-

ment of objects that best matches the received

signal.
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For the purposes of this discussion we need to

distinguish terminologically between elements

in the population and objects to be resolved.

We use element and object to make this termi-

nological distinction. Element refers to an ele-

ment of the population. Object refers to a sig-

nal generating object. A population element

thus consists of a number of objects.

4.1 Element representation

We have simplified the problem in a number of

ways.

Instead of attempting to find the location of

the objects in 3-dimensional space, we limit

the problem to finding positions of the ob-

jects in the 2-dimensional field of view of

the sensor.

As a result of orthonormalization (see

[Br87]), the brightness (or amplitude) of the

hypothesized objects need not be consid-

ered during the search. The amplitudes are

computed after a best solution is found. This

is consistent with the principle of maximum

entropy as explained in [Li94].

The PRF generated by each object is as-
sumed known.

As a consequence of these simplifications,

each object may be represented by its centroid,

a pair of numbers, representing the <x, y> po-

sition of the hypothesized object in the two-di-
mensional field of view of the sensor.

Our population therefore consists of sets of el-

ements, each of which is represented by its 2-
dimensional centroid.

To simplify comparing one element with an-

other, we order the objects in each element by

their x-coordinate. Thus each population ele-

ment is an ordered list of <x, y> pairs of num-
bers.

/
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4.2 Smoothing the Ruggedness of the
Search Space

The search space for this problem turns out to

be very rugged. By this we mean two things.

1. A very small change in the <x, y> position

of an object can make a very big difference

in the value of the objective function of the

element within which that object appears.

2. There are a great many local maxima.

The more rugged the search space, the more

difficult the optimization problem. To make

matters worse, we do not know in advance

how many elements will best approximate the

given signal. Thus the problem is not only to

find the best solution in a rugged n-dimension-

al search space, it is also to find the best di-

mensionality.

The naive approach would be to let the genetic

algorithm determine both the dimensionality

and the position of the elements within that n-

dimensional space. With no information, this

approach would work, but it would be quite
slow.

We did some experiments and found that we

could "climb the dimensionality ladder" as fol-
lows.

of the objects in the solution with dimensional-

ity n are always very close to the objects in the

solution with dimensionality n-1. Very close in

this case means that it is generally a matter of

hill-climbing to move from the positions of the

n-1 objects in the n-1 dimensional solution to

the optimum positions of the "corresponding"

n-1 objects in the n-dimensional problem.

Thus the biggest challenge in moving from di-

mensionality n-1 to dimensionality n is to de-

termine where to put the additional object.

4.3 Genetic Operators

We defined the following genetic operators.

The first two are combination operators; the

last two are mutation operations

. Cross-over. Select two elements. Select ob-

jects from each to include in the third ele-

ment. Recall that during each run of the

genetic algorithm, the population is homo-

geneous in size: each element has the same

number of objects. Furthermore, the objects

are sorted by x-position. This makes cross-

over a more meaningful operation since

comparable objects are being substituted for
each other.

• First run a genetic algorithm to determine

the best 1-dimensional (i.e., one object)

solution.

• Using that 1-dimensional solution to help

seed the population, run the genetic algo-

rithm again to find the best 2-dimensional
solution.

• Proceeding in this way, find solutions with

increasingly higher dimensionality. Stop,

when the solution with dimensionality n+ 1

is a worse approximation than the solution

with dimensionality n.

This approach is successful because the solu-

tion with dimensionality n is always an ap-

proximate superset of the solution with

dimensionality n-1. By this we mean that n-1
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Weighted-average of elements. This oper-
ator is similar to crossover. But instead of

selecting objects randomly from either of

the two parents, create a new object by tak-

ing the weighted average of the correspond-

ing elements in the parents. The weights

depend on how good an approximation the

parents are. This turns out to be a powerful

hill-climbing operation.

Line-optlmize an object• Given an ele-

ment, select at random both an object and a

direction in the x-y plane. Using standard

line-optimization techniques, move the ob-

ject along the selected direction until one

finds a position that maximizes the ele-

ment's overall value.



4. Bretthorst's optimization technique.

Bretthorst [Br87] has developed a powerful

optimization technique for problems similar

to this one. In many cases, it finds the opti-

mum value on its own. Our experience was

that in some cases it found only a local opti-

mum. We therefore incorporated it as an op-

erator in our genetic algorithm framework.

To use it, select an element from the popula-

tion, which is used to seed the Bretthorst al-

gorithm. The result produced by the

Bretthorst algorithm is taken as the result of

the operator.

The integration of known optimization tech-

niques into a genetic algorithm framework

poses a challenge. That challenge and our ap-

proach to its resolution is discussed in the fol-

lowing section.

4.4 Maintaining Population Diversity

A fundamental principle of genetic algorithms

population management is: the better an indi-

vidual, the better its chance of being retained

in the population. A consequence of this prin-

ciple is that over time, even if new population

elements were selected from the search space

at random, the average fitness of the popula-
tion would increase.

A second fundamental (and countervailing)

principle of genetic algorithms is the need to

maintain diversity. Premature population con-

vergence to a suboptimal solution is exactly

what genetic algorithms are intended to avoid.

We have developed an approach to population

management that attempts to satisfy both ob-

jectives. Our approach is based on the use of

two techniques: continual injection of new,

random elements into the population and tour-

nament selection with varying competition
levels.

Continual injection of new, random elements

is just as it sounds. Instead of transforming an

existing schedule, an entirely new schedule is
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generated. This ensures that the population

will never be completely isolated in one part of

the search space. In addition, once a new ran-

dom element is generated one of the two muta-

tion operations are applied to it to allow it
climb to a local maximum. This increases the

probability that the element will be retained in

the population long enough to participate in
additional transformations.

Tournament selection is used in the transfor-

mation and replacement step. It is used to se-

lect both the element(s) to be transformed and
the element to be discarded.

To select an element for transformation, a sub-

set of the population, the selection pool, is cho-

sen randomly and uniformly from the entire

population. The best (or best two) element(s)

of that pool are selected. To select an element

to be discarded, we again choose a subset of

the population; the worst element of the selec-

tion pool is selected for deletion.

Since elements are included in the selection

pool with equal probability, the size of the se-

lection pool is inversely related to the selectiv-

ity of the search. If the pool size were 1, one

would be selecting (for transformation or dele-

tion) an element uniformly from the popula-

tion, i.e., with no regard for how well the ele-

ment solved the problem. This would mini-

mize convergence, but it would also minimize

the likelihood that good features would be ex-

ploited.

On the other hand, were the pool to be the en-

tire population, one would always select the

best element(s) for transformation and the
worst for deletion. This would maximize con-

vergence, but it would virtually eliminate sig-

nificant diversity.

Our strategy is to allow the size of the selec-

tion pool to vary based on the extent to which

the population has converged. Convergence is

measured by the difference between the best

element of the population and the median ele-

ment of the population. As they approach each
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other, the size of the selection pool is de-

creased, thereby promoting population diver-

gence. As they move apart, the size of the se- i(la.-'_)

lotionpoolis n asod,,hus romo*io 
lation convergence. :,,_......

This yo-yoing effect tends to ensure that the _i!:: i!_:

population will not converge to a single area of :i:.._.-_

the search space. :_:'-: _:

5.0 Results

The genetic algorithm strategy was applied to

real data from a staring visible CCD sensor at-

tached to a 24-inch telescope on Table Moun-

tain, California. Figure 2 shows the center

256X256 pixel scene of NGC 6819 measured

September 19, 1992. We chose four stars as
model PRFs and ran 1-4 source models on 32

different clumps. The clumps were chosen to

include single and multiple sources with a va-

riety of amplitudes at locations.

Three cases are discussed. In these examples,

the bright star at -(250, 320) was used as the

PRF. The three clumps are displayed in Figure

3 as detailed contour plots.

Star clump 423 at -(300, 190) is com-

monly thought to be a single source and is

used for calibration photometry. Our algo-

rithm agreed with this hypothesis with an

extremely high confidence of 99%. The

estimated amplitude was 1198 counts with

an error bar of only 3 counts. The location

was 9.704 +/- 0.006 pixels east and

11.493+/-0.006 pixels north. The small

error bars result from the high signal to

noise ratio of -150.

• Star clump 416 at -(200, 360) is also com-

monly taken to be a single source. Our tech-

nique, however, assigned virtually no

probability to a one- source model com-

pared to a two source model. The two

source model was also preferred over the

three source model by a factor of 100. The

two source model put a source about 11

A Hybrid Genetic Algorithm for Resolving Closely Spaced Objects

160

H_ _wlg _ g-lg-g2
..4_ _ .iii!_:_._ _.: ]_lllo _ 24" TcdMw_14

Figure 2. View from Table Mountain

(,_.tS)

times dimmer than the other separated by

2.2 pixels to the east and 2.5 pixels to the

south. The location error bars are greater

than -1/6 pixel for the dimmer source com-

pared to 0.013 pixel for the brighter source.

The amplitude error bars for the dimmer

source were about 6% compared to 0.5%

for the brighter source.

• Star clump 414 at -(340, 210) looked

interesting because the bulge to the south

and west of the doublet gives evidence for

another source. The technique, in fact,

strongly preferred a three source model

with a dim source located at 8.8 pixels east

and 6.9 pixels north. It was separated by 4.6

pixels east and 0.5 pixels south from one

source and 0.6 pixels east and 5.2 pixeis

south from the other pulse

For all of the above clumps, we ran the code

several times with different initial guesses In

all cases the genetic algorithm converged on

the indicated solution in a reasonable amount

of processing time A standard hill climbing
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Figure 3. Three Clumps

technique gave different solutions for different

initial guesses.

6.0 Conclusion

This work has shown that a hybrid genetic al-

gorithm can be developed to solve a difficult

optimization problem arising from image pro-

cessing. Our experience has convinced us that

neither traditional optimization techniques nor

traditional genetic algorithm techniques would

have allowed us to solve this problem. As our

genetic operators show, a hybrid genetic algo-

rithm approach allows one to incorporate

known optimization techniques into a genetic

algorithm framework. This strategy demon-

strates that one need not sacrifice known, pow-

erful techniques when one employs genetic al-

gorithms.
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