257 research outputs found

    The First Year IceCube-DeepCore Results

    Full text link
    The IceCube Neutrino Observatory includes a tightly spaced inner array in the deepest ice, called DeepCore, which gives access to low-energy neutrinos with a sizable surrounding cosmic ray muon veto. Designed to be sensitive to neutrinos at energies as low as 10 GeV, DeepCore will be used to study diverse physics topics with neutrino signatures, such as dark matter annihilations and atmospheric neutrino oscillations. The first year of DeepCore physics data-taking has been completed, and the first observation of atmospheric neutrino-induced cascades with IceCube and DeepCore are presented.Comment: 4 pages, 3 figures, TAUP 2011 (Journal of Physics: Conference Series (JCPS)

    Results from Seven Years of AMANDA-II

    Full text link
    AMANDA is a first-generation high energy neutrino telescope, which has taken data at the South Pole in its final configuration since 2000. Results from seven years of operation are presented here, including observation of the atmopheric neutrino flux and searches for astrophysical neutrinos from cosmic ray accelerators, gamma ray bursts, and dark matter annihilations. In 2007, AMANDA was incorporated into the IceCube neutrino telescope, where its higher density of instrumentation improves the low energy response. In the near future, AMANDA will be replaced by the IceCube Deep Core, a purpose-built low energy extension of IceCube.Comment: Presented at Neutrino 2008, Christchurch, New Zealan

    Interplay of energy dependent astrophysical neutrino flavor ratios and new physics effects

    Full text link
    We discuss the importance of flavor ratio measurements in neutrino telescopes, such as by measuring the ratio between muon tracks to cascades, for the purpose of extracting new physics signals encountered by astrophysical neutrinos during propagation from the source to the detector. The detected flavor ratios not only carry the energy information of specific new physics scenarios which alter the transition probabilities in distinctive ways, but also the energy dependent flavor composition at the source. In the present work, we discuss the interplay of these two energy dependent effects and identify which new physics scenarios can be distinguished from the detected flavor ratios as a function of astrophysical parameters. We use a recently developed self-consistent neutrino production model as our toy model to generate energy dependent source flavor ratios and discuss (invisible) neutrino decay and quantum decoherence as specific new physics examples. Furthermore, we identify potentially interesting classes of sources on the Hillas plot for the purpose of new physics searches. We find that sources with substantial magnetic fields 10^3 Gauss <= B <= 10^6 Gauss, such as Active Galactic Nuclei (AGN) cores, white dwarfs, or maybe gamma-ray bursts, have, in principle, the best discrimination power for the considered new physics scenarios, whereas AGN jets, which typically perform as pion beam sources, can only discriminate few sub cases in the new physics effects. The optimal parameter region somewhat depends on the class of new physics effect considered.Comment: 34 pages, 10 figures, 1 table. Discussion on statistics added, minor clarifications. Final version published in JCA

    High Energy Neutrino Telescopes

    Full text link
    This paper presents a review of the history, motivation and current status of high energy neutrino telescopes. Many years after these detectors were first conceived, the operation of kilometer-cubed scale detectors is finally on the horizon at both the South Pole and in the Mediterranean Sea. These new detectors will perhaps provide us the first view of high energy astrophysical objects with a new messenger particle and provide us with our first real glimpse of the distant universe at energies above those accessible by gamma-ray instruments. Some of the topics that can be addressed by these new instruments include the origin of cosmic rays, the nature of dark matter, and the mechanisms at work in high energy astrophysical objects such as gamma-ray bursts, active galactic nuclei, pulsar wind nebula and supernova remnants.Comment: 33 pages, 21 figures, accepted for publication in the New Journal of Physic

    GZK Photons Above 10 EeV

    Full text link
    We calculate the flux of "GZK-photons", namely the flux of photons produced by extragalactic nucleons through the resonant photoproduction of pions, the so called GZK effect. This flux depends on the UHECR spectrum on Earth, of the spectrum of nucleons emitted at the sources, which we characterize by its slope and maximum energy, on the distribution of sources and on the intervening cosmological backgrounds, in particular the magnetic field and radio backgrounds. For the first time we calculate the GZK photons produced by nuclei. We calculate the possible range of the GZK photon fraction of the total UHECR flux for the AGASA and the HiRes spectra. We find that for nucleons produced at the sources it could be as large as a few % and as low as 10^{-4} above 10 EeV. For nuclei produced at the sources the maximum photon fraction is a factor of 2 to 3 times smaller above 10 EeV but the minimum could be much smaller than for nucleons. We also comment on cosmogenic neutrino fluxes.Comment: 20 pages, 9 figures (21 panels), iopart.cls and iopart12.clo needed to typese

    TANAMI blazars in the IceCube PeV-neutrino fields

    Get PDF
    The IceCube Collaboration has announced the discovery of a neutrino flux in excess of the atmospheric background. Owing to the steeply falling atmospheric background spectrum, events at PeV energies most likely have an extraterrestrial origin. We present the multiwavelength properties of the six radio-brightest blazars that are positionally coincident with these events using contemporaneous data of the TANAMI blazar sample, including high-resolution images and spectral energy distributions. Assuming the X-ray to Îł-ray emission originates in the photoproduction of pions by accelerated protons, the integrated predicted neutrino luminosity of these sources is high enough to explain the two detected PeV events

    Calibration and Characterization of the IceCube Photomultiplier Tube

    Full text link
    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.Comment: 40 pages, 12 figure

    Lateral Distribution of Muons in IceCube Cosmic Ray Events

    Get PDF
    In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations
    • …
    corecore